Question 1, Parts a and b

Function *f*₁

$$\sum_{i=n}^{2n} 6i$$

Apply Rule 2 with c = 6

$$= 6 \sum_{i=n}^{2n} i$$

Apply Rule 4 with $k=2n, j=n, \ell=1$; Assume that n>1

$$= 6\left(\sum_{i=1}^{2n} i - \sum_{i=1}^{n-1} i\right)$$

Apply Rule 8 twice, with k = 2n and k = n - 1 respectively

$$= 6\left(\frac{2n(2n+1)}{2} - \frac{(n-1)(n-1+1)}{2}\right)$$
$$= (12n^2 + 6n) - (3n^2 - 3n)$$
$$= 9n^2 + 9n$$
$$= \Theta(n^2)$$

Function *f*₂

$$\sum_{i=1}^{5} i^3$$

Apply Rule 5 with j = 1 , k = 5

$$= 1^3 + 2^3 + 3^3 + 4^3 + 5^3$$

= 225 $= \Theta(1)$

Function *f*₃

$$\sum_{i=0}^n 4\log(2^i \cdot 2^{2^i})$$

Apply Rule 2 with c=4 and $f(i)=\log(2^i\cdot 2^{2^i})$

$$=4\sum_{i=0}^{n}\log(2^{i}\cdot 2^{2^{i}})$$

Apply Rule 12 with $a = 2^i$ and $n = 2^{2^i}$

$$= 4 \sum_{i=0}^{n} \left(\log(2^{i}) + \log(2^{2^{i}}) \right)$$

Apply Rule 15 twice

$$=4\sum_{i=0}^{n} \left(i+2^{i}\right)$$

Apply Rule 3 with $j = 0, k = n, f(i) = i, g(i) = 2^i$

$$=4\left(\sum_{i=0}^{n}i+\sum_{i=0}^{n}2^{i}\right)$$

Apply Rule 9 with k = n

$$= 4\left(\sum_{i=0}^{n} i + 2^{n+1} - 1\right)$$

Apply Rule 6 with $k=n, j=0, \, \ell=1$

$$= 4\left(0 + \sum_{i=1}^{n} i + 2^{n+1} - 1\right)$$

Apply Rule 8 with k = n

$$= 4 \left(0 + \frac{n(n+1)}{2} + 2^{n+1} - 1 \right)$$
$$= 4 \left(\frac{n^2}{2} + \frac{n}{2} + 2 \cdot 2^n - 1 \right)$$
$$= 2n^2 + 2n + 8 \cdot 2^n - 4$$
$$= \Theta(2^n)$$

Function *f*₄

$$\sum_{i=1}^n \sum_{j=2}^{\log(i)-2} 2^j$$

Apply Rule 4 with $k = \log(i) - 2, j = 2, \ell = 0$

$$= \sum_{i=1}^{n} \left(\sum_{j=0}^{\log(i)-2} 2^{j} - \sum_{j=0}^{1} 2^{j} \right)$$

Apply Rule 9 with $k = \log(i) - 2$

$$= \sum_{i=1}^{n} \left(2^{\log(i)-2+1} - 1 - \sum_{j=0}^{1} 2^{j} \right)$$
$$= \sum_{i=1}^{n} \left(2^{\log(i)-1} - 1 - \sum_{j=0}^{1} 2^{j} \right)$$
$$= \sum_{i=1}^{n} \left(\frac{i}{2} - 1 - \sum_{j=0}^{1} 2^{j} \right)$$

Apply Rule 6 with j = 0, k = 1

$$= \sum_{i=1}^{n} \left(\frac{i}{2} - 1 - (2^{0} + 2^{1}) \right)$$
$$= \sum_{i=1}^{n} \left(\frac{i}{2} - 1 - 1 - 2 \right)$$

$$=\sum_{i=1}^n \left(\frac{i}{2}-4\right)$$

Apply Rule 3 with $f(i) = \frac{i}{2}$, g(i) = -4

$$=\sum_{i=1}^{n}\frac{i}{2}+\sum_{i=1}^{n}(-4)$$

Apply Rule 1 with j = 1 , k = n, c = -4

$$= \sum_{i=1}^{n} \frac{i}{2} + (n-1+1)(-4)$$
$$= \sum_{i=1}^{n} \frac{i}{2} - 4n$$

Apply Rule 2 with $c = \frac{1}{2}$

$$=\frac{1}{2}\sum_{i=1}^{n}i-4n$$

Apply Rule 8 with k = n

$$= \frac{1}{2} \left(\frac{n(n+1)}{2} \right) - 4n$$
$$= \frac{n^2}{4} + \frac{n}{4} - 4n$$
$$= \frac{n^2}{4} - \frac{15n}{4}$$
$$= \Theta(n^2)$$

Function *f*₅

$$\sum_{i=n}^{n^2} 3i$$

Apply Rule 2 with c = 3, f(i) = i

$$=3\sum_{i=n}^{n^2}i$$

Apply Rule 4 with j=n , $k=n^2$, $\ell'=1$; Assume n>1

$$= 3\left(\sum_{i=1}^{n^{2}} i - \sum_{i=1}^{n-1} i\right)$$

Apply Rule 8 with $k = n^2$

$$= 3\left(\frac{n^2(n^2+1)}{2} - \sum_{i=1}^{n-1}i\right)$$

Apply Rule 8 with k = n - 1

$$= 3\left(\frac{n^2(n^2+1)}{2} - \frac{(n-1)(n-1+1)}{2}\right)$$
$$= 3\left(\frac{n^4}{2} + \frac{n^2}{2} - \frac{n^2}{2} + \frac{n}{2}\right)$$
$$= \frac{3n^4}{2} + \frac{3n}{2}$$
$$= \Theta(n^4)$$

Function *f*₆

$$\sum_{i=1}^n \sum_{j=1}^n i$$

Apply Rule 1 with j = 1 , k = n , c = i

$$= \sum_{i=1}^{n} (n-1+1)i$$
$$= \sum_{i=1}^{n} ni$$

Apply Rule 2 with c = n, f(i) = i

$$=n\sum_{i=1}^{n}i$$

Apply Rule 8 with k = n

$$= n \frac{n(n+1)}{2}$$
$$= \frac{n^3}{2} + \frac{n^2}{2}$$
$$= \Theta(n^3)$$

Question 1, Part c

1. $f_2 = \Theta(1)$ 2. $f_4 = \Theta(n^2)$ (with a constant of $\frac{1}{4}$) 3. $f_1 = \Theta(n^2)$ (with a constant of 9) 4. $f_6 = \Theta(n^3)$ 5. $f_5 = \Theta(n^4)$ 6. $f_3 = \Theta(2^n)$

Question 2

$$f(n) = 9n^{2} - 16n + 42(\log(n))^{2}$$
$$g(n) = 4n^{2}$$

To Show: There is a c > 0, $n_0 > 0$ such that for any $n \ge n_0$:

$$9n^2 - 16n + 42(\log(n))^2 \le c4n^2$$

Define new variables x, y, z such that x + y + z = c. The above objective is equivalent to showing that we can pick x, y, z that satisfy x + y + z > 0 such that the following 3 inequality hold:

- 1. $9n^2 \le x4n^2$
- 2. $-16n \le y4n^2$
- 3. $42 \log^2(n) \le z 4n^2$

Inequality 1

 $9n^2 \leq x4n^2$

If we set x = 3 then $9n^2 \le 12n^2$, and this is given

Inequality 2

 $-16n \le y4n^2$

This is true for any n > 0, $y \ge 0$. Arbitrarily pick y = 1

Inequality 3

Subgoal: If we can show that $42 \log^2(n) \le n \log(n) \le z 4n^2$, then by transitivity, we have inequality #3.

Step 1:

$$42\log^2(n) \le n\log(n)$$

Divide both sides by log(n); Pick $n_0 > 1$ to ensure that log(n) > 0

 $42\log(n) \le n$

This equivalence is given for sufficiently large n

Step 2:

 $n\log(n) \le z4n^2$

Divide both sides by n; Pick $n_0 > 0$ to make this valid

 $\log(n) \le z4n$

This equivalence is given for sufficiently large *n* if we set z = 1

Thus, for sufficiently large *n*, we have $42 \log^2(n) \le z 4n^2$ for z = 1

Conclusion

c = x + y + z = 3 + 1 + 1 = 5, so we have shown that, for sufficiently large n:

$$9n^2 - 16n + 42(\log(n))^2 \le 5(4n^2)$$

Limit Test

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{9n^2 - 16n + 42(\log(n))^2}{4n^2}$$
$$= \lim_{n \to \infty} \left(\frac{9}{4} - \frac{4}{n} + \frac{42(\log(n))^2}{4n^2}\right) = \frac{9}{4} - 0 + 0$$

Therefore since $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ is a constant, then $f(n) \in \Theta(g(n))$