
Apply Rule 2 with 

Apply Rule 4 with , , ; Assume that 

Apply Rule 8 twice, with  and  respectively

Apply Rule 5 with , 

Question 1, Parts a and b
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Apply Rule 2 with  and 
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Apply Rule 8 with 

Apply Rule 4 with , , 

Apply Rule 9 with 
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Apply Rule 3 with , 

Apply Rule 1 with , , 

Apply Rule 2 with 

Apply Rule 8 with 
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Apply Rule 4 with , , ; Assume 

Apply Rule 8 with 

Apply Rule 8 with 
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Apply Rule 8 with 

1. 
2.  (with a constant of )
3.  (with a constant of )
4. 
5. 
6. 

To Show: There is a ,  such that for any :

Define new variables  such that . The above objective is equivalent to
showing that we can pick  that satisfy  such that the following 3 inequality
hold:
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Question 1, Part c
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If we set  then , and this is given

This is true for any , . Arbitrarily pick 

Subgoal: If we can show that , then by transitivity, we have
inequality #3.

Step 1:

Divide both sides by ; Pick  to ensure that 

This equivalence is given for sufficiently large 

Step 2:

Divide both sides by ; Pick  to make this valid

This equivalence is given for sufficiently large  if we set 

Thus, for sufficiently large , we have  for 

, so we have shown that, for sufficiently large n:

9 ≤ x4n2 n2

x = 3 9 ≤ 12n2 n2

Inequality 2

−16n ≤ y4n2

n > 0 y ≥ 0 y = 1

Inequality 3
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Therefore since  is a constant, then 

=lim
n→∞

f (n)
g(n)

lim
n→∞

9 − 16n + 42(log(n)n2 )2

4n2

= ( − + ) = − 0 + 0lim
n→∞

9
4

4
n

42(log(n))2

4n2
9
4

limn→∞
f (n)
g(n) f (n) ∈ Θ(g(n))


