Question 1, Parts a and b

Function f_{1}

$$
\sum_{i=n}^{2 n} 6 i
$$

Apply Rule 2 with $c=6$

$$
=6 \sum_{i=n}^{2 n} i
$$

Apply Rule 4 with $k=2 n, j=n, \ell=1$; Assume that $n>1$

$$
=6\left(\sum_{i=1}^{2 n} i-\sum_{i=1}^{n-1} i\right)
$$

Apply Rule 8 twice, with $k=2 n$ and $k=n-1$ respectively

$$
\begin{gathered}
=6\left(\frac{2 n(2 n+1)}{2}-\frac{(n-1)(n-1+1)}{2}\right) \\
=\left(12 n^{2}+6 n\right)-\left(3 n^{2}-3 n\right) \\
=9 n^{2}+9 n \\
=\Theta\left(n^{2}\right)
\end{gathered}
$$

Function f_{2}

$$
\sum_{i=1}^{5} i^{3}
$$

Apply Rule 5 with $j=1, k=5$

$$
=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}
$$

$$
\begin{gathered}
=1+8+27+64+125 \\
=225 \\
=\Theta(1)
\end{gathered}
$$

Function f_{3}

$$
\sum_{i=0}^{n} 4 \log \left(2^{i} \cdot 2^{2^{i}}\right)
$$

Apply Rule 2 with $c=4$ and $f(i)=\log \left(2^{i} \cdot 2^{2^{i}}\right)$

$$
=4 \sum_{i=0}^{n} \log \left(2^{i} \cdot 2^{2^{i}}\right)
$$

Apply Rule 12 with $a=2^{i}$ and $n=2^{2^{i}}$

$$
=4 \sum_{i=0}^{n}\left(\log \left(2^{i}\right)+\log \left(2^{2^{i}}\right)\right)
$$

Apply Rule 15 twice

$$
=4 \sum_{i=0}^{n}\left(i+2^{i}\right)
$$

Apply Rule 3 with $j=0, k=n, f(i)=i, g(i)=2^{i}$

$$
=4\left(\sum_{i=0}^{n} i+\sum_{i=0}^{n} 2^{i}\right)
$$

Apply Rule 9 with $k=n$

$$
=4\left(\sum_{i=0}^{n} i+2^{n+1}-1\right)
$$

Apply Rule 6 with $k=n, j=0, \ell=1$

$$
=4\left(0+\sum_{i=1}^{n} i+2^{n+1}-1\right)
$$

Apply Rule 8 with $k=n$

$$
\begin{gathered}
=4\left(0+\frac{n(n+1)}{2}+2^{n+1}-1\right) \\
=4\left(\frac{n^{2}}{2}+\frac{n}{2}+2 \cdot 2^{n}-1\right) \\
=2 n^{2}+2 n+8 \cdot 2^{n}-4 \\
=\Theta\left(2^{n}\right)
\end{gathered}
$$

Function f_{4}

$$
\sum_{i=1}^{n} \sum_{j=2}^{\log (i)-2} 2^{j}
$$

Apply Rule 4 with $k=\log (i)-2, j=2, \ell=0$

$$
=\sum_{i=1}^{n}\left(\sum_{j=0}^{\log (i)-2} 2^{j}-\sum_{j=0}^{1} 2^{j}\right)
$$

Apply Rule 9 with $k=\log (i)-2$

$$
\begin{gathered}
=\sum_{i=1}^{n}\left(2^{\log (i)-2+1}-1-\sum_{j=0}^{1} 2^{j}\right) \\
=\sum_{i=1}^{n}\left(2^{\log (i)-1}-1-\sum_{j=0}^{1} 2^{j}\right) \\
=\sum_{i=1}^{n}\left(\frac{i}{2}-1-\sum_{j=0}^{1} 2^{j}\right)
\end{gathered}
$$

Apply Rule 6 with $j=0, k=1$

$$
\begin{gathered}
=\sum_{i=1}^{n}\left(\frac{i}{2}-1-\left(2^{0}+2^{1}\right)\right) \\
=\sum_{i=1}^{n}\left(\frac{i}{2}-1-1-2\right)
\end{gathered}
$$

$$
=\sum_{i=1}^{n}\left(\frac{i}{2}-4\right)
$$

Apply Rule 3 with $f(i)=\frac{i}{2}, g(i)=-4$

$$
=\sum_{i=1}^{n} \frac{i}{2}+\sum_{i=1}^{n}(-4)
$$

Apply Rule 1 with $j=1, k=n, c=-4$

$$
\begin{gathered}
=\sum_{i=1}^{n} \frac{i}{2}+(n-1+1)(-4) \\
=\sum_{i=1}^{n} \frac{i}{2}-4 n
\end{gathered}
$$

Apply Rule 2 with $c=\frac{1}{2}$

$$
=\frac{1}{2} \sum_{i=1}^{n} i-4 n
$$

Apply Rule 8 with $k=n$

$$
\begin{gathered}
=\frac{1}{2}\left(\frac{n(n+1)}{2}\right)-4 n \\
=\frac{n^{2}}{4}+\frac{n}{4}-4 n \\
=\frac{n^{2}}{4}-\frac{15 n}{4} \\
=\Theta\left(n^{2}\right)
\end{gathered}
$$

Function f_{5}

$$
\sum_{i=n}^{n^{2}} 3 i
$$

Apply Rule 2 with $c=3, f(i)=i$

$$
=3 \sum_{i=n}^{n^{2}} i
$$

Apply Rule 4 with $j=n, k=n^{2}, \ell=1$; Assume $n>1$

$$
=3\left(\sum_{i=1}^{n^{2}} i-\sum_{i=1}^{n-1} i\right)
$$

Apply Rule 8 with $k=n^{2}$

$$
=3\left(\frac{n^{2}\left(n^{2}+1\right)}{2}-\sum_{i=1}^{n-1} i\right)
$$

Apply Rule 8 with $k=n-1$

$$
\begin{gathered}
=3\left(\frac{n^{2}\left(n^{2}+1\right)}{2}-\frac{(n-1)(n-1+1)}{2}\right) \\
=3\left(\frac{n^{4}}{2}+\frac{n^{2}}{2}-\frac{n^{2}}{2}+\frac{n}{2}\right) \\
=\frac{3 n^{4}}{2}+\frac{3 n}{2} \\
=\Theta\left(n^{4}\right)
\end{gathered}
$$

Function f_{6}

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} i
$$

Apply Rule 1 with $j=1, k=n, c=i$

$$
\begin{gathered}
=\sum_{i=1}^{n}(n-1+1) i \\
=\sum_{i=1}^{n} n i
\end{gathered}
$$

Apply Rule 2 with $c=n, f(i)=i$

$$
=n \sum_{i=1}^{n} i
$$

Apply Rule 8 with $k=n$

$$
\begin{gathered}
=n \frac{n(n+1)}{2} \\
=\frac{n^{3}}{2}+\frac{n^{2}}{2} \\
=\Theta\left(n^{3}\right)
\end{gathered}
$$

Question 1, Part c

1. $f_{2}=\Theta(1)$
2. $f_{4}=\Theta\left(n^{2}\right)$ (with a constant of $\frac{1}{4}$)
3. $f_{1}=\Theta\left(n^{2}\right)$ (with a constant of 9)
4. $f_{6}=\Theta\left(n^{3}\right)$
5. $f_{5}=\Theta\left(n^{4}\right)$
6. $f_{3}=\Theta\left(2^{n}\right)$

Question 2

$$
\begin{gathered}
f(n)=9 n^{2}-16 n+42(\log (n))^{2} \\
g(n)=4 n^{2}
\end{gathered}
$$

To Show: There is a $c>0, n_{0}>0$ such that for any $n \geq n_{0}$:

$$
9 n^{2}-16 n+42(\log (n))^{2} \leq c 4 n^{2}
$$

Define new variables x, y, z such that $x+y+z=c$. The above objective is equivalent to showing that we can pick x, y, z that satisfy $x+y+z>0$ such that the following 3 inequality hold:

1. $9 n^{2} \leq x 4 n^{2}$
2. $-16 n \leq y 4 n^{2}$
3. $42 \log ^{2}(n) \leq z 4 n^{2}$

Inequality 1

$$
9 n^{2} \leq x 4 n^{2}
$$

If we set $x=3$ then $9 n^{2} \leq 12 n^{2}$, and this is given

Inequality 2

$$
-16 n \leq y 4 n^{2}
$$

This is true for any $n>0, y \geq 0$. Arbitrarily pick $y=1$

Inequality 3

Subgoal: If we can show that $42 \log ^{2}(n) \leq n \log (n) \leq z 4 n^{2}$, then by transitivity, we have inequality \#3.

Step 1:

$$
42 \log ^{2}(n) \leq n \log (n)
$$

Divide both sides by $\log (n)$; Pick $n_{0}>1$ to ensure that $\log (n)>0$

$$
42 \log (n) \leq n
$$

This equivalence is given for sufficiently large n
Step 2:

$$
n \log (n) \leq z 4 n^{2}
$$

Divide both sides by n; Pick $n_{0}>0$ to make this valid

$$
\log (n) \leq z 4 n
$$

This equivalence is given for sufficiently large n if we set $z=1$
Thus, for sufficiently large n, we have $42 \log ^{2}(n) \leq z 4 n^{2}$ for $z=1$

Conclusion

$c=x+y+z=3+1+1=5$, so we have shown that, for sufficiently large n :

$$
9 n^{2}-16 n+42(\log (n))^{2} \leq 5\left(4 n^{2}\right)
$$

Limit Test

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{9 n^{2}-16 n+42(\log (n))^{2}}{4 n^{2}} \\
= & \lim _{n \rightarrow \infty}\left(\frac{9}{4}-\frac{4}{n}+\frac{42(\log (n))^{2}}{4 n^{2}}\right)=\frac{9}{4}-0+0
\end{aligned}
$$

Therefore since $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ is a constant, then $f(n) \in \Theta(g(n))$

