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Prelude

This written assignment is a reflection on PA2 and will measure your understanding of the
runtime complexity of various operations on Linked Lists with and without the variations we
introduced in PA2.

For all of the following problems, assume that the lists have 7 elements, and unless
specified otherwise, your asymptotic runtimes should only be given in terms of n (ie no
constants or variables other than n).

Problem 1 - Sorted Lists

[6/30 points]

For PA2, your list was required to store elements in sorted order.

a. [2 points] What is the unqualified worst-case complexity of finding an element in a regular
linked list (one in which the items aren't stored in sorted order)?

b. [2 points] What is the unqualified worst-case complexity of finding an element in a linked
list in which the elements are stored in sorted order?

c. [2 points] Depending on your answers to questions 1 and 2 explain why storing elements
in sorted order does or does not affect the asymptotic complexity of finding an element?



Problem 2 - Hinted Search

[12/30 points]

For PA2, your list included hinted versions of the search functions. This gave these functions a
different place to start their search from rather than the headNode .

Imagine we are using the SortedLinkedList from PA2 to store a list of users sorted by first
name. We've devised a system for getting hints for the hinted version of insert and search: we
create a separate Array[Option[SortedListNode]] ofsize 26 named hints .
hints[0] stores a reference to the first node in our linked list whose value starts with an
"A" ,or None ifnonodesinourliststart with "A" . hints[1] does the same for
nodes starting with  "B" , hints[2] for "C" , etc.

Whenever we want to search for, or insert a new name into our list, we first check hints to
see if a node starting with the same letter as our target exists. If it does, we use that element as
the hint to our search/insert. Otherwise we use the unhinted search/insert. If the operation was
an insert, we also update hints as needed.

For this problem, assume that there are roughly the same number of names starting with
each letter of the alphabet.

a. [2 points] How does the sorted nature of the list affect our ability to use hinted searches?

b. [2 points] What is the asymptotic complexity of updating and retreiving hints from the
hints array?

c. [4 points] What is the unqualified worst-case complexity of finding an element in our list
when using a hint retreived from the hints ? In this case you may assume the hint in
hints was not None , so we will use the hinted version of search.

d. [4 points] If the answer is different from the answer you gave in Problem 1b, explain how
the use of hints changes the complexity class of our search. If the answer is the same as
the answer you gave in Problem 1b, then you claim the runtime of the two search methods
only differs by a constant factor. What is this constant factor and why?



Problem 3 - Duplicate Elements

[12/30 points]

For PA2, your linked list handled duplicate elements by storing them all within a single node with
a count member to keep track of how many elements with that value have been added to the
list. This is in contrast to creating a new node for every element, even if multiple elements have
the same value.

a. [2 points] How does the sorted nature of the list affect our ability to treat duplicate
elements specially?

b. [56 points] If we use the SortedLinkedList from PA2 to store a list of student grades,
where each grade is an integer ranging from 0 to 100, what is the unqualified worst-case
runtime to find the node for a particular grade? Is this runtime aymptotically different if we
create a new node for every element? Explain why or why not.

c. [5 points] If we use the SortedLinkedList from PA2 to store a list of student first
names, where we can assume there are an infinte number of possible first names, what is
the unqualified worst-case runtime to find the node for a particular name? Is this runtime
aymptotically different if we create a new node for every element? Explain why or why not.



