
Summations

1.
∑k

i=j c = (k − j + 1)c

2.
∑k

i=j(cf(i)) = c
∑k

i=j f(i)

3.
∑k

i=j(f(i) + g(i)) =
(∑k

i=j f(i)
)
+
(∑k

i=j g(i)
)

4.
∑k

i=j(f(i)) =
(∑k

i=ℓ(f(i))
)
−
(∑j−1

i=ℓ (f(i))
)

(for any ℓ < j)

5.
∑k

i=j f(i) = f(j) + f(j + 1) + . . .+ f(k − 1) + f(k)

6.
∑k

i=j f(i) = f(j) + . . .+ f(ℓ− 1) +
(∑k

i=ℓ f(i)
)

(for any j < ℓ ≤ k)

7.
∑k

i=j f(i) =
(∑ℓ

i=j f(i)
)
+ f(ℓ+ 1) + . . .+ f(k) (for any j ≤ ℓ < k)

8.
∑k

i=1 i =
k(k+1)

2

9.
∑k

i=0 2
i = 2k+1 − 1

n! ≤ csn
n

Inequalities

1. f(n) ≤ g(n) is true if you can find some h(n) where f(n) ≤ h(n) and h(n) ≤ g(n)

2. f(n) ≤ g(n) is true if you can find some h(n) where f(n)− h(n) ≤ g(n)− h(n)

3. f(n) ≤ g(n) is true if you can find some h(n) ≥ 0 (for all n) such that f(n) · h(n) ≤ g(n) · h(n)

4. Take it as a given that: O(1) ≤ O(log(n)) ≤ O(n) ≤ O(n2) ≤ O(nk) (for k > 2) ≤ 2n

Logarithms

1. log(na) = a log(n)

2. log(an) = log(a) + log(n)

3. log(na) = log(n)− log(a)

4. logb(n) =
logc(n)
logc(b)

5. log(2n) = 2log(n) = n

1

Part 1: Data Structure Design (25 points total)

Several production implementations of hash maps use a variant of Hash Tables that we did not discuss in class. In
this variant, instead of using a linked list (chaining) to store overflow, each bucket is the root of a self-balancing
binary search tree (e.g., one of the balanced binary search tree variants discussed in class). In other words, a hash
table with N buckets is composed of N BSTs. A simplified implementation of such a Hash Table is shown below.

1 class VariantHashMap[K,V] extends mutable.Map[K,V]

2 {

3 val buckets = Array[TreeMap[K,V]](INITIAL_SIZE)

4 val size = 0

5

6 def resizeIfNecessary (): Unit =

7 if(buckets.size * ALPHA_MAX < size)

8 {

9 /* double buckets.size and rehash */

10 }

11

12 def put(key: K, value: V): Unit =

13 {

14 size += 1

15 resizeIfNecessary ()

16 buckets(key.hashCode).put(key , value)

17 }

18

19 def apply(key: K): V =

20 buckets(key.hashCode). apply(key)

21 }

You may assume that the .hashCode method produces a sufficiently (pseudo)random output and runs in O(1) time.

2

Question 1 (8 points)

For the apply method, list each of the following asymptotic runtimes. Each answer should be in the form of
a tight worst-case (i.e., Big-O) bound for each.

1. The Expected Runtime: O(1) or O(αmax) — Each bucket has at most αmax (a constant) elements,
so the cost of finding an element in any Binary Search Tree is constant

2. The Amortized Expected Runtime: O(1) or O(αmax) — The are no periodic costs to amortize
over, so this is just the expected runtime

3. The Amortized Runtime: O(log(n)) — The are no periodic costs to amortize over, so this is just
the worst-case runtime

4. The (unqualified) Runtime: O(log(n)) — If all elements are in a single hash bucket, the data
structure reduces to being a balanced binary search tree

Answer:

□ (2 pt) The expected runtime is O(1), or O(αmax), or ‘constant’

□ (2 pt) The amortized expected runtime is O(1), or O(αmax), or ‘constant’

□ (2 pt) The amortized runtime is O(log(n)), or ‘logarithmic’

□ (2 pt) The unqualified runtime is O(log(n)), or ‘logarithmic’

3

Question 2 (8 points)

For the put method, list each of the following asymptotic runtimes. Each answer should be in the form of a
tight worst-case (i.e., Big-O) bound for each.

1. The Expected Runtime: O(1) — The worst-case behavior is when put needs to rehash the array,
which takes linear time; However amortized runtimes average out over expected runtimes.

2. The Amortized Expected Runtime: O(1), or O(αmax) — Rehashings amortize over insertions, so
we get constant expected for the fast-path insert, and O(1) amortized for the rehash.

3. The Amortized Runtime: O(log(n)) — Rehashings amortize over insertions, so we get amortized
constant for the rehash, but without the expected qualifier, we have O(log(n)) to insert into a BST.

4. The (unqualified) Runtime: O(n) — Again, without the amortized qualifier, we could need to
rehash the array.

Answer:

□ (2 pt) The expected runtime is O(1), or ‘constant’; However, since this aspect was not presented
clearly in class, O(n) or ‘linear’ is also accepted.

□ (2 pt) The amortized expected runtime is O(1), or O(αmax), or ‘constant’

□ (2 pt) The amortized runtime is O(log(n)), or ‘logarithmic’

□ (2 pt) The unqualified runtime is O(n), or ‘linear’

Question 3 (5 points)

Asymptotically (i.e., ignoring constant factors), would the amount of memory used by this table be more
than, less than, or about the same as the chaining hash table discussed in class? Why?

Answer:
The same. The number of nodes in a Binary Search Tree is exactly the number of records it stores.
Each node in a BST is constant-size.

□ (4 pt) The answer includes a statement that the space consumption is asymptotically the same.

□ (1 pt) The answer justifies this by communicating that the space consumption of a binary search
tree is proportional to the number of records, or indicates that the space consumption is the
same as the hash table with chaining.

□ (2 pt partial credit) If the answer is given in terms of exact (i.e., non-asymptotic) space com-
plexity.

4

Question 4 (4 points)

Name a specific data structure that implements a Balanced Binary Search Tree (i.e., a data structure that
guarantees that its tree will be balanced).

Answer:
An AVL or a red-black tree.

□ (4 pt) Answer references an AVL or Red-Black Tree

5

Part 2: Project Review (20 points total)

A B

CD

M

N

O

P
Q

Question 5 (10 points)

PA3 asked you to implement three methods: Two graph traversals, and a method to organize the contents of
StreetGraph into a Map[String,Seq[String]] for easy access by the other two methods. Illustrate the Map

that would be generated for the StreetGraph shown above with intersections A, B, C, and D and streets M,
N, O, P, and Q

Answer:
{A → [M,Q], B → [N], C → [O], D → [P]}

□ (4pt) The answer shows a recognition of the fact that the data structure should allow efficient
access to some subset of the edges incident on each vertex.

□ (3pt) The above is correct, and specifically demonstrates a recognition of the fact that the data
structure should only include outgoing edges for each vertex.

□ (3pt) The answer is fully correct.

35 36 71 94 96
Head
Tail

node0 node1 node2 node3 node4

Question 6 (10 points)

Consider the variant linked list you implemented in PA2, an instance of which is illustrated above. List
the sequence of value comparisons a correct implementation would perform in response to the method call
update(node2, 20)

Answer:
71 vs 20, 36 vs 20, 35 vs 20

□ (7pt) The answer shows a recognition of the fact that the list is expected to be in sorted order.

□ (3pt) The answer is exactly correct, or at most off-by-one.

6

Part 3: Binary Search Trees (20 points total)

Question 7 (5 points)

Draw the Binary Search Tree (not AVL or RB-Tree) that would result after inserting the following elements
in the order in which they are given: 81, 19, 91, 71, and 4

Answer:

1. 81

(a) 19

i. 4

ii. 71

(b) 91

□ (3 pt) An in-order traversal of the tree produces the elements in order. (3 pt partial credit for a
minor typo)

□ (2 pt) The data structure follows the insertion order.

7

Question 8 (10 points)

Label every node in the following tree with its balance factor and indicate which nodes (if any) violate the
AVL tree property.

Answer:

0 0

0

0 +1+1

+1

+1

□ (7 pt) Answer has the correct balance factors (modulo sign)

□ (2 pt) Answer correctly identifies violations (or the lack thereof)

□ (1 pt) Answer’s balance factors have the correct sign

8

Question 9 (5 points)

Consider the following tree, with its nodes colored Red (grey) and Black (black). Mark and identify each way
in which the tree below violates the properties of a Red-Black tree.

Answer:
A single violation is present: There are 4 black nodes on a path from the root to the rightmost leaf,
and only 3 on every other path.

□ (4pt) Answer correctly identifies the violation

□ (1pt) Answer does not identify any incorrect violations

9

Part 4: Asymptotic Analysis (15 points total)

Consider the following three functions:

1. f(n) = n3 + n2 + n

2. g(n) =
∑log(n)

i=0 i

3. h(n) =

{
n if n mod 5 = 1

n2 otherwise

Question 10 (15 points)

For each function, give (i) a tight lower asymptotic (i.e., big-Ω) bound, (ii) a tight upper asymptotic (i.e.,
big-O) bound, and (iii) a tight asymptotic (i.e., big-Θ) bound or state that no tight bound exists. Your
answers should be a concise description of the applicable complexity class: a single term with no constants.

Answer:
Variant 1

Big-O Big-Ω Big-θ

f(n) n3 n3 n3

g(n) log2(n) log2(n) log2(n)

h(n) n2 n n/a

□ (3 pt) At least one of Big-O, Big-Θ, or Big-Ω includes the correct answer for f(n)

□ (1 pt each) The remaining two answers for f(n) are correct.

□ (3 pt) At least one of Big-O, Big-Θ, or Big-Ω includes the correct answer for the summation
question (either g(n) or h(n)).

□ (1 pt each) The remaining two answers for the summation are correct.

□ (2 pt each) Big-O and Big-Ω are correct for the cases-block question (either g(n) or h(n)).

□ (1 pt) Big-Θ is correctly marked as n/a, or left blank.

10

Part 5: Short Answer (20 points total)

Question 11 (5 points)

Recall the hash join algorithm discussed in class, where we combine elements from two datasets on a “join
key.” The algorithm achieves an expected linear runtime (in the size of both datasets and the result) with a
two-phased approach. In the first phase, it builds a hash map over the records of the first dataset according
to their join keys. In the second phase, it iterates over the records of the second dataset and looks up
the matching records in the hash map. Propose a way to modify this algorithm so that it has an
unqualified log-linear runtime (i.e., O(n log(n))). You may assume that the two input tables have size
n and each record in dataset 1 matches with at most one record of dataset 2.

Answer:
Replace the hash map with a map implemented using a balanced binary search tree (e.g., an AVL or
Red-Black tree).

□ (5pt) The answer is correct (balanced binary search tree, AVL, Red-Black Tree, or similar).

□ (3pt partial credit) The answer makes some reference to the connection between hash tables /
hash maps and expected-constant runtimes.

Question 12 (5 points)

Write down a function f(n) such that f ∈ O(n log(n)) and f ∈ Ω(log(n))

Answer:
Any function in a complexity class between log(n) and n log(n) (inclusive) meets the criteria. Standard
complexity classes in this range are: log(n), n, n log(n), although the way the question is phrased allows
for the function to be prefixed by any constant.

□ (5 pt) The answer is any function in a complexity class between log(n) and n log(n) (inclusive).
Answers given in the form of code or an algorithm are acceptable if the code/algorithm has a
runtime in the required bounds.

Question 13 (5 points)

Write down the highest possible number of IO operations (disk reads) needed to find a record in a B+Tree.
Your answer should be given as a function of the number of keys per page (k) and the number of records
stored in the tree (n).

Answer:
logk/2(n) (logk(n) is also acceptable)

□ (3 pt) The answer is Θ(log(n))

□ (2 pt) The answer is fully correct (i.e., logk/2(n) or logk(n))

11

Question 14 (5 points)

Write down the name of one of the course TAs (e.g., one of your recitation instructors).

Answer:
Amelia (Amm), Andrew, Anton, David, Dikshit (DK), Heba, Hope, Jacky, Joey, Kartike, Kyle, Nawar,
Riad, Sean, Thinh, Tirth, or Vrund

□ (5 pt) The answer correctly names a TA.

12

Scrap

13

