
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Debugging

mailto:epmikida@buffalo.edu

Announcements and Feedback

● AI Quiz due Monday, 2/6 @ 11:59
● PA0 will hopefully be posted over the weekend

○ PA1 will follow shortly after
● Stay seated until the class ends completely

Things WILL go wrong…often

Being a good computer scientist does not mean getting things 100%
right all of the time. Things WILL go wrong.

A good computer scientist knows how to solve problems, and how to
recover when things go wrong.

Things WILL go wrong…often

Being a good computer scientist does not mean getting things 100%
right all of the time. Things WILL go wrong.

A good computer scientist knows how to solve problems, and how to
recover when things go wrong.

Let’s talk about some useful tools for recovering…

The REPL (read - eval - print loop)

● From IntelliJ: Ctrl+Shift+D
○ Highlight a line and press Ctrl+Shift+X to execute
○ Copy+past a line and press Ctrl+Enter to execute

● From the command line: scala
○ Paste or type commands to run them
○ Type :help to get a list of additional commands

● From SBT: console

Basic Debugging

Live Demo

Unit Testing

● Break the big problem into smaller problems
○ Test each small solution before combining them

● Useful for debugging
○ Sanity check each step in a large process to make sure it works
○ Separate the UI from the tests

● Useful way to encode your assumptions, constraints, etc
○ Automatic reminder if your assumptions change
○ Also acts as self-documentation

Unit Testing

● Break the big problem into smaller problems
○ Test each small solution before combining them

● Useful for debugging
○ Sanity check each step in a large process to make sure it works
○ Separate the UI from the tests

● Useful way to encode your assumptions, constraints, etc
○ Automatic reminder if your assumptions change
○ Also acts as self-documentation

If you’re building a boat, you aren’t going to build the
entire thing then just throw it in the water and hope it
floats…you would test throughout the whole process.

The same logic applies to your coding projects!

ScalaTest

class HelloWorldTest extends AnyFlatSpec {
 "HelloWorld.doThings()" should "return 5" in {
 assert(HelloWorld.doThings() == 5)
 }
 it should "not return 10" in {
 assert(HelloWorld.doThings() != 10)
 }
 "HelloWorld.x" should "have type Float" in {
 assert(HelloWorld.x.isInstanceOf[Float])
 }
 "Register(0).addToValue" should "return the input value"
 in {
 val reg = Register(0)
 for (i <- 1 to 10000) { assert(reg.addToValue(i) == i) }
 }
}

ScalaTest

class HelloWorldTest extends AnyFlatSpec {
 "HelloWorld.doThings()" should "return 5" in {
 assert(HelloWorld.doThings() == 5)
 }
 it should "not return 10" in {
 assert(HelloWorld.doThings() != 10)
 }
 "HelloWorld.x" should "have type Float" in {
 assert(HelloWorld.x.isInstanceOf[Float])
 }
 "Register(0).addToValue" should "return the input value"
 in {
 val reg = Register(0)
 for (i <- 1 to 10000) { assert(reg.addToValue(i) == i) }
 }
}

Describe in “english”
what the test should
do

“in” defines what the
test does

Confirm assumptions
with asserts

Call as many asserts
that you need

Live Demo

ScalaTest

Profiling

● IntelliJ -> Profilers
○ https://www.jetbrains.com/help/idea/cpu-profiler.html

● SBT -> HProf
○ https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html

https://www.jetbrains.com/help/idea/cpu-profiler.html
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html

Profiling

● IntelliJ -> Profilers
○ https://www.jetbrains.com/help/idea/cpu-profiler.html

● SBT -> HProf
○ https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html

fork in run := true
javaOptions in run += “-agentlib:hprof=cpu=samples,depth=10”

https://www.jetbrains.com/help/idea/cpu-profiler.html
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html

Profiling

● IntelliJ -> Profilers
○ https://www.jetbrains.com/help/idea/cpu-profiler.html

● SBT -> HProf
○ https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html

fork in run := true
javaOptions in run += “-agentlib:hprof=cpu=samples,depth=10”

Load HProf Sample CPU Usage Stack Trace Depth

https://www.jetbrains.com/help/idea/cpu-profiler.html
https://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html

HProf Traces
JAVA PROFILE 1.0.1, created Fri Sep 3 02:24:46 2021

Copyright (c) 2003, 2005, Oracle and/or its affiliates. All rights reserved.

Redistribution and use in source and binary forms, with or without

…

TRACE 300207:
scala.collection.StrictOptimizedLinearSeqOps.drop(LinearSeq.scala:261)
scala.collection.StrictOptimizedLinearSeqOps.drop$(LinearSeq.scala:257)
scala.collection.immutable.List.drop(List.scala:79)
scala.collection.immutable.List.drop(List.scala:79)

…

CPU SAMPLES BEGIN (total = 185) Fri Sep 3 02:24:48 2021
rank self accum count trace method
 1 44.86% 44.86% 83 300207 scala.collection.StrictOptimizedLinearSeqOps.drop
 2 35.14% 80.00% 65 300210 scala.collection.immutable.$colon$colon.tail
 3 5.95% 85.95% 11 300071 java.lang.ClassLoader.defineClass1
 4 2.16% 88.11% 4 300209 scala.collection.immutable.Range.foreachmVcsp

HProf Traces
JAVA PROFILE 1.0.1, created Fri Sep 3 02:24:46 2021

Copyright (c) 2003, 2005, Oracle and/or its affiliates. All rights reserved.

Redistribution and use in source and binary forms, with or without

…

TRACE 300207:
scala.collection.StrictOptimizedLinearSeqOps.drop(LinearSeq.scala:261)
scala.collection.StrictOptimizedLinearSeqOps.drop$(LinearSeq.scala:257)
scala.collection.immutable.List.drop(List.scala:79)
scala.collection.immutable.List.drop(List.scala:79)

…

CPU SAMPLES BEGIN (total = 185) Fri Sep 3 02:24:48 2021
rank self accum count trace method
 1 44.86% 44.86% 83 300207 scala.collection.StrictOptimizedLinearSeqOps.drop
 2 35.14% 80.00% 65 300210 scala.collection.immutable.$colon$colon.tail
 3 5.95% 85.95% 11 300071 java.lang.ClassLoader.defineClass1
 4 2.16% 88.11% 4 300209 scala.collection.immutable.Range.foreachmVcsp

