Asymptotic Notation

CSE 250 Spring 2023

Feb 8 and 10, 2023

Textbook: Ch. 7.3-7.4
When is an algorithm "fast"?

- Real world ("Wall Clock") time?

 Is 10s fast? 100ms? 10μs?
 It depends on the task!

- Do you rank the algorithm or the implementation?
 Compare Grace Hopper's implementation to yours.

- CPU Effects (e.g., ARM RK3399S vs Intel i9 vs AMD 5950)
 Different speed/capability trade-offs

- Bottlenecks: CPU vs IO vs Memory vs Network vs ...

Wall-clock time is not great for a 50k-ft view.
Growth Functions

\[f(n) \]

\(n \): The "size" of the input
e.g., the number of users, rows of data, etc...

\(f(n) \): The number of "steps" taken for an input of size \(n \)
e.g., 20 steps per user is \(20 \times n \) (with \(n = |\text{Users}| \))
Growth Function Assumptions

Problem sizes are non-negative integers

\[n \in \mathbb{Z}^+ \cup \{0\} \]

We can't reverse time

\[f(n) \geq 0 \]

Smaller problems aren't harder than bigger problems

For any \(n_1 < n_2, f(n_1) \leq f(n_2) \)

To make the math simpler, we'll allow fractional steps.
... but $f_1(n) = 20n \neq f_2(n) = 19n$
Idea: Organize growth functions into complexity classes.
Asymptotic Analysis @ 5000 feet

Case 1: \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \)

\(f(n) \) is "bigger"; \(g(n) \) is the better runtime on larger data)

Case 2: \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)

\(g(n) \) is "bigger"; \(f(n) \) is the better runtime on larger data)

Case 3: \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \) some constant

\(f(n), g(n) \) "behave the same" on larger data)
Big-Theta

The following are all saying the same thing

- \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \) some non-zero constant.
- \(f(n) \) and \(g(n) \) have the same complexity.
- \(f(n) \) and \(g(n) \) are in the same complexity class.
Big-Theta

The following are all saying the same thing

- \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \) some non-zero constant.
- \(f(n) \) and \(g(n) \) have the same complexity.
- \(f(n) \) and \(g(n) \) are in the same complexity class.
- \(f(n) \in \Theta(g(n)) \)
Big-Theta (As a Limit)

\[f(n) \in \Theta(g(n)) \text{ iff...} \]

\[0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \]
Big-Theta

$\Theta(g(n))$ is the set of functions in the same complexity class as $g(n)$
Big-Theta

\(\Theta(g(n)) \) is the set of functions in the same complexity class as \(g(n) \)

People sometimes write \(f(n) = \Theta(g(n)) \) when they mean \(f(n) \in \Theta(g(n)) \)
Big-Theta

$\Theta(g(n))$ is the set of functions in the same complexity class as $g(n)$

People sometimes write $f(n) = \Theta(g(n))$ when they mean $f(n) \in \Theta(g(n))$

Symmetric: $f(n) \in \Theta(g(n))$ is the same as $g(n) \in \Theta(f(n))$
all in the same complexity class

If you can shift/stretch $g(n)$ into $f(n)$, they're in the same class.
... Instead, think of $g(n)$ as a bound.
... Instead, think of $g(n)$ as a bound. Can you bound $f(n)$ by shift/stretching $g(n)$?
The diagram illustrates the relationship between runtime and input size for a given function. The curve $f(n)$ represents the runtime as a function of input size n. The shaded area between $c_{\text{high}}g(n)$ and $c_{\text{low}}g(n)$ indicates the variability in runtime for different input sizes n. The point n_0 marks a threshold where the runtime significantly changes.
Big-Theta

The following are all saying the same thing

- \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \) some non-zero constant.
- \(f(n) \) and \(g(n) \) have the same complexity.
- \(f(n) \) and \(g(n) \) are in the same complexity class.
- \(f(n) \in \Theta(g(n)) \)
- \(f(n) \) is bounded from above and below by \(g(n) \)
Big-Theta (As a Bound)

\[f(n) \in \Theta(g(n)) \text{ iff...} \]

\[\exists c_{\text{low}}, n_0 \text{ s.t. } \forall n > n_0, f(n) \geq c_{\text{low}} \cdot g(n) \]

\[\exists c_{\text{high}}, n_0 \text{ s.t. } \forall n > n_0, f(n) \leq c_{\text{high}} \cdot g(n) \]
Big-Theta (As a Bound)

\[f(n) \in \Theta(g(n)) \text{ iff...} \]

\[\exists c_{\text{low}}, n_0 \text{ s.t. } \forall n > n_0, f(n) \geq c_{\text{low}} \cdot g(n) \]

There is some \(c_{\text{low}} \) that we can multiply \(g(n) \) by so that \(f(n) \) is \textit{always} bigger than \(c_{\text{low}} g(n) \) for values of \(n \) above some \(n_0 \)

\[\exists c_{\text{high}}, n_0 \text{ s.t. } \forall n > n_0, f(n) \leq c_{\text{high}} \cdot g(n) \]
Big-Theta (As a Bound)

\[f(n) \in \Theta(g(n)) \text{ iff...} \]

\[\exists c_{low}, n_0 \text{ s.t. } \forall n > n_0, f(n) \geq c_{low} \cdot g(n) \]

There is some \(c_{low} \) that we can multiply \(g(n) \) by so that \(f(n) \) is always bigger than \(c_{low} g(n) \) for values of \(n \) above some \(n_0 \)

\[\exists c_{high}, n_0 \text{ s.t. } \forall n > n_0, f(n) \leq c_{high} \cdot g(n) \]

There is some \(c_{high} \) that we can multiply \(g(n) \) by so that \(f(n) \) is always smaller than \(c_{high} g(n) \) for values of \(n \) above some \(n_0 \)
Proving Big-Theta (Without Limits)

1. Assume \(f(n) \geq c_{low} g(n) \).
2. Rewrite the above formula to find a \(c_{low} \) for which it holds (for big enough \(n \)).
3. Assume \(f(n) \leq c_{high} g(n) \).
4. Rewrite the above formula to find a \(c_{high} \) for which it holds (for big enough \(n \)).
Tricks

If $f(n) \geq g'(n)$ and $g'(n) \geq g(n)$ then $f(n) \geq g'(n)$
Tricks

If \(f(n) \geq g'(n) \) and \(g'(n) \geq g(n) \) then \(f(n) \geq g'(n) \)

Lesson: To show \(f(n) \geq cg(n) \), you can instead show:
Tricks

If \(f(n) \geq g'(n) \) and \(g'(n) \geq g(n) \) then \(f(n) \geq g'(n) \)

Lesson: To show \(f(n) \geq cg(n) \), you can instead show:

1. \(f(n) \geq cg'(n) \)
Tricks

If \(f(n) \geq g'(n) \) and \(g'(n) \geq g(n) \) then \(f(n) \geq g'(n) \)

Lesson: To show \(f(n) \geq cg(n) \), you can instead show:

1. \(f(n) \geq cg'(n) \)
2. \(cg'(n) \geq cg(n) \)
Tricks

If \(f(n) \geq g(n) \) and \(f'(n) \geq g'(n) \) then
\[
f(n) + f'(n) \geq g(n) + g'(n)
\]
Tricks

If \(f(n) \geq g(n) \) and \(f'(n) \geq g'(n) \) then \(f(n) + f'(n) \geq g(n) + g'(n) \)

Lesson: To show \(f(n) + f'(n) \geq cg(n) + c'g'(n) \), you can instead show:
Tricks

If \(f(n) \geq g(n) \) and \(f'(n) \geq g'(n) \) then \(f(n) + f'(n) \geq g(n) + g'(n) \)

Lesson: To show \(f(n) + f'(n) \geq cg(n) + c'g'(n) \), you can instead show:

1. \(f(n) \geq cg(n) \)
Tricks

If \(f(n) \geq g(n) \) and \(f'(n) \geq g'(n) \) then \(f(n) + f'(n) \geq g(n) + g'(n) \)

Lesson: To show \(f(n) + f'(n) \geq cg(n) + c'g'(n) \), you can instead show:

1. \(f(n) \geq cg(n) \)
2. \(f'(n) \geq c'g'(n) \)
Tricks

- \(\log(n) \geq c \) (for any \(n \geq 2^c \))
- \(n \geq \log(n) \) for any \(n \geq 0 \)
- \(n^2 \geq n \) for any \(n \geq 1 \)
- \(2^n \geq n^c \) for sufficiently large \(n \)
Examples

\[2^n + 4n \in \Theta(n^2) ? \]
Examples

\[2^n + 4n \in \Theta(n^2) ? \]

\[2^n + 4n \in \Theta(n) ? \]
Examples

\[2^n + 4n \in \Theta(n^2) ? \]

\[2^n + 4n \in \Theta(n) ? \]

\[1000n \log(n) + 5n \in \Theta(n \log(n)) ? \]
Shortcut: Find the dominant term being summed, and remove constants.
Asymptotic Runtime
We write $T(n)$ to mean a runtime growth function.
In data structures, n is usually the number of elements in a collection.
Examples

What is the asymptotic runtime of...
Examples

What is the asymptotic runtime of...

- ...find x in a Linked List?
Examples

What is the asymptotic runtime of...

- ...find x in a Linked List?
- ...counting the number of times x appears in a Linked List?
Examples

What is the asymptotic runtime of...

• ...find x in a Linked List?
• ...counting the number of times x appears in a Linked List?
• ...using multiplication to compute Factorial?
Common Runtimes

Constant Time: $\Theta(1)$
 e.g., $T(n) = c$ (runtime is independent of n)

Logarithmic Time: $\Theta(\log(n))$
 e.g., $T(n) = c \log(n)$ (for some constant c)

Linear Time: $\Theta(n)$
 e.g., $T(n) = c_1 n + c_0$ (for some constants c_0, c_1)

Quadratic Time: $\Theta(n^2)$
 e.g., $T(n) = c_2 n^2 + c_1 n + c_0$

Polynomial Time: $\Theta(n^k)$ (for some $k \in \mathbb{Z}^+$)
 e.g., $T(n) = c_k n^k + \ldots + c_1 n + c_0$

Exponential Time: $\Theta(c^n)$ (for some $c \geq 1$)
Big-O, Big-Ω
What is the asymptotic runtime of...

• ...looking up an element in an Array?
What is the asymptotic runtime of...

- ...looking up an element in an Array?

The runtime depends on where the item is in the list.
for(i <- 0 until data.size)
{
 if(data(i) == target){ return i }
}
return NOT_FOUND
What is the runtime growth function?

```scala
for(i <- 0 until data.size)
{
    if( data(i) == target ){ return i }
}
return NOT_FOUND
```
\[T(n) = \begin{cases}
\ell & \text{if } \text{data}(0) == \text{target} \\
2\ell & \text{if } \text{data}(1) == \text{target} \\
3\ell & \text{if } \text{data}(2) == \text{target} \\
\vdots & \vdots \\
(n - 1)\ell & \text{if } \text{data}(n - 1) == \text{target} \\
n\ell & \text{otherwise}
\end{cases} \]
Aside: No general, meaningful notion of limit for $T(n)$s like this.
If we choose \(c = \ell \), we can show \(T(n) \leq c \cdot n \) (for any \(n \))
$T(n) \in \Theta(n)$?

If we choose $c = \ell$, we can show $T(n) \leq c \cdot n$ (for any n)

... but there is no c s.t. $T(n) \geq c \cdot n$ always!
If we choose $c = \ell$, we can show $T(n) \leq c \cdot n$ (for any n)

... but there is no c s.t. $T(n) \geq c \cdot n$ always!

... $T(1000000)$ could be as small as ℓ, so $T(1000000) \not\geq 1000000\ell$
If we choose \(c = \ell \), we can show \(T(n) \geq c \cdot 1 \) (for any \(n \))
$T(n) \in \Theta(1)$?

If we choose $c = \ell$, we can show $T(n) \geq c \cdot 1$ (for any n)
... but there is no c s.t. $T(n) \leq c \cdot 1$ always!
$T(n) \in \Theta(1)$?

If we choose $c = \ell$, we can show $T(n) \geq c \cdot 1$ (for any n)

... but there is no c s.t. $T(n) \leq c \cdot 1$ always!

... $T(1000000)$ could be as big as 1000000ℓ, so $T(1000000) \not\leq \ell$
Problem: What if \(g(n) \) doesn't bound \(f(n) \) from both above and below?
if input = 1:
 /* take 1 step */
else:
 /* take n steps */
if input = 1:
 /* take 1 step */
else:
 /* take n steps */

Schroedinger's Code: Simultaneously behaves like $f_1(n) = 1$ and $f_2(n) = n$ (can't tell until runtime)
Upper, Lower Bounds

"Worst-Case Complexity"
\[O(g(n)) \] is the set of functions that are in \(g(n) \)'s complexity class, or a "smaller" class.

"Best-Case Complexity"
\[\Omega(g(n)) \] is the set of functions that are in \(g(n) \)'s complexity class, or a "bigger" class.
Big-O

\[f(n) \in O(g(n)) \text{ iff...} \]

\[\exists c_{\text{high}}, n_0 \text{ s.t. } \forall n > n_0, f(n) \leq c_{\text{high}} \cdot g(n) \]
Big-O

\[f(n) \in O(g(n)) \text{ iff...} \]

\[\exists c_{\text{high}}, n_0 \text{ s.t. } \forall n > n_0, f(n) \leq c_{\text{high}} \cdot g(n) \]

There is some \(c_{\text{high}} \) that we can multiply \(g(n) \) by so that \(f(n) \) is always smaller than \(c_{\text{high}} g(n) \) for values of \(n \) above some \(n_0 \)
Examples

\[2^n + 4n \in O(n^2)\]
Examples

$2^n + 4n \in O(n^2)\,?$

$2^n + 4n \in O(n^4 + 8n^3)\,?$
Examples

\[2^n + 4n \in O(n^2) ? \]

\[2^n + 4n \in O(n^4 + 8n^3) ? \]

\[n\log(n) + 5n \in O(n^2 + 5n) ? \]
Big-Ω

\[f(n) \in \Omega(g(n)) \text{ iff...} \]

\[\exists c_{\text{low}}, n_0 \text{ s.t. } \forall n > n_0, f(n) \geq c_{\text{low}} \cdot g(n) \]
Big-Ω

\[f(n) \in \Omega(g(n)) \text{ iff...} \]

\[\exists c_{\text{low}}, n_0 \text{ s.t. } \forall n > n_0, f(n) \geq c_{\text{low}} \cdot g(n) \]

There is some \(c_{\text{low}} \) that we can multiply \(g(n) \) by so that \(f(n) \) is always smaller than \(c_{\text{low}} g(n) \) for values of \(n \) above some \(n_0 \).
Examples

\[2^n + 4n \in \Omega(n^2 + 5) ? \]
Examples

\[2^n + 4n \in \Omega(n^2 + 5) ? \]

\[2^n + 4n \in \Omega(\log(n)) ? \]
Examples

\[2^n + 4n \in \Omega(n^2 + 5) ? \]

\[2^n + 4n \in \Omega(\log(n)) ? \]

\[n\log(n) + 5n \in \Omega(n\log(n)) ? \]
Recap

Big-O: "Worst Case" bound

$O(g(n))$ is the functions that $g(n)$ bounds from above

Big-Ω: "Best Case" bound

$Ω(g(n))$ is the functions that $g(n)$ bounds from below

Big-Θ: "Tight" bound

$Θ(g(n))$ is the functions that $g(n)$ bounds from both above and below
Recap

Big-O: "Worst Case" bound
\[O(g(n)) \] is the functions that \(g(n) \) bounds from above

Big-Ω: "Best Case" bound
\[\Omega(g(n)) \] is the functions that \(g(n) \) bounds from below

Big-Θ: "Tight" bound
\[\Theta(g(n)) \] is the functions that \(g(n) \) bounds from **both** above and below

\[f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n)) \]
Recap

Big-O: "Worst Case" bound

If \(T(n) \in O(g(n)) \), then the runtime is no worse than \(g(n) \)

Big-Ω: "Best Case" bound

If \(T(n) \in \Omega(g(n)) \), then the runtime is no better than \(g(n) \)

Big-Θ: "Tight" bound

If \(T(n) \in \Theta(g(n)) \), then the runtime is always \(g(n) \)

\[
f(n) \in \Theta(g(n)) \iff f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n))
\]