
Asymptotic NotationAsymptotic Notation
CSE 250 Spring 2023CSE 250 Spring 2023
Feb 8 and 10, 2023

TextbookTextbook: Ch. 7.3-7.4: Ch. 7.3-7.4

1

When is an algorithm "fast"?When is an algorithm "fast"?

Real world ("Wall Clock") time?
Is 10s fast? 100ms? 10μs?

It depends on the task!
Do you rank the algorithm or the implementation?

Compare Grace Hopper's implementation to yours.
CPU Effects (e.g., ARM RK3399S vs Intel i9 vs AMD 5950)

Different speed/capability trade-offs
Bottlenecks: CPU vs IO vs Memory vs Network vs ...

Wall-clock time is not great for a 50k-ft view.

2

Growth FunctionsGrowth Functions

: The "size" of the input
e.g., the number of users, rows of data, etc...

: The number of "steps" taken for an input of size

e.g., 20 steps per user is (with)

f (n)

n

f (n)
n

20 × n n = |𝚄𝚜𝚎𝚛𝚜|

3

Growth Function AssumptionsGrowth Function Assumptions

Problem sizes are non-negative integers

We can't reverse time

Smaller problems aren't harder than bigger problems
For any ,

To make the math simpler, we'll allow fractional steps.

n ∈ ∪ {0}ℤ
+

f (n) ≥ 0

<n1 n2 f () ≤ f ()n1 n2

4

... but (n) = 20n ≢ (n) = 19nf1 f2

5

input size

ru
nt

im
e

6

Idea: Organize growth functions into complexity classes.

7

Asymptotic Analysis @ 5000 feetAsymptotic Analysis @ 5000 feet

Case 1:

(is "bigger"; is the better runtime on larger data)

Case 2:

(is "bigger"; is the better runtime on larger data)

Case 3:

(, "behave the same" on larger data)

li = ∞mn→∞

f(n)

g(n)

f (n) g(n)

li = 0mn→∞

f(n)

g(n)

g(n) f (n)

li = some constantmn→∞

f(n)

g(n)

f (n) g(n)

8

Big-ThetaBig-Theta
The following are all saying the same thing

 some non-zero constant.

 and have the same complexity.
 and are in the same complexity class.

=limn→∞

f(n)

g(n)

f (n) g(n)

f (n) g(n)

9

Big-ThetaBig-Theta
The following are all saying the same thing

limn→∞
f(n)
g(n) = some non-zero constant.

f(n) and g(n) have the same complexity.
f(n) and g(n) are in the same complexity class.
f(n) ∈ Θ(g(n))

9

Big-Theta (As a Limit)Big-Theta (As a Limit)
 iff...f (n) ∈ Θ(g(n))

0 < < ∞lim
n→∞

f (n)

g(n)

10

Big-ThetaBig-Theta
 is the set of functions in the same complexity class

as
Θ(g(n))

g(n)

11

Big-ThetaBig-Theta
Θ(g(n)) is the set of functions in the same complexity class

as g(n)

People sometimes write f(n) = Θ(g(n)) when they mean
f(n) ∈ Θ(g(n))

11

Big-ThetaBig-Theta
Θ(g(n)) is the set of functions in the same complexity class

as g(n)

People sometimes write f(n) = Θ(g(n)) when they mean
f(n) ∈ Θ(g(n))

Symmetric: f(n) ∈ Θ(g(n)) is the same as g(n) ∈ Θ(f(n))

11

input size

ru
nt

im
e

12

input size

ru
nt

im
e

scale

12

input size

ru
nt

im
e

scale

offset

12

input size

ru
nt

im
e

scale

offset

both

12

input size

ru
nt

im
e

scale

offset

both

all in the same complexity clas

12

If you can shift/stretch into , they're in the same
class.

g(n) f (n)

13

input size

ru
nt

im
e

14

... Instead, think of as a bound.g(n)

15

... Instead, think of g(n) as a bound.

Can you bound f(n) by shift/stretching g(n)?

15

input size

ru
nt

im
e

16

input size

ru
nt

im
e

16

input size

ru
nt

im
e

16

input size

ru
nt

im
e

16

input size

ru
nt

im
e

f(n)
chighg(n)

clowg(n)

n0

16

Big-ThetaBig-Theta
The following are all saying the same thing

 some non-zero constant.

 and have the same complexity.
 and are in the same complexity class.

 is bounded from above and below by

=limn→∞

f(n)

g(n)

f (n) g(n)

f (n) g(n)

f (n) ∈ Θ(g(n))

f (n) g(n)

17

Big-Theta (As a Bound)Big-Theta (As a Bound)
 iff...

 s.t. ,

 s.t. ,

f (n) ∈ Θ(g(n))

∃ ,clow n0 ∀n > n0 f (n) ≥ ⋅ g(n)clow

∃ ,chigh n0 ∀n > n0 f (n) ≤ ⋅ g(n)chigh

18

Big-Theta (As a Bound)Big-Theta (As a Bound)
f(n) ∈ Θ(g(n)) iff...

∃clow, n0 s.t. ∀n > n0, f(n) ≥ clow ⋅ g(n)
There is some clow that we can multiply g(n) by so that
f(n) is always bigger than clowg(n) for values of n
above some n0

∃chigh, n0 s.t. ∀n > n0, f(n) ≤ chigh ⋅ g(n)

18

Big-Theta (As a Bound)Big-Theta (As a Bound)
f(n) ∈ Θ(g(n)) iff...

∃clow, n0 s.t. ∀n > n0, f(n) ≥ clow ⋅ g(n)
There is some clow that we can multiply g(n) by so that
f(n) is always bigger than clowg(n) for values of n
above some n0

∃chigh, n0 s.t. ∀n > n0, f(n) ≤ chigh ⋅ g(n)
There is some chigh that we can multiply g(n) by so
that f(n) is always smaller than chighg(n) for values of
n above some n0

18

Proving Big-Theta (Without Limits)Proving Big-Theta (Without Limits)

1. Assume .
2. Rewrite the above formula to find a for which it holds

(for big enough n).
3. Assume .

4. Rewrite the above formula to find a for which it holds
(for big enough n).

f (n) ≥ g(n)clow

clow

f (n) ≤ g(n)chigh

chigh

19

TricksTricks
If and then f (n) ≥ (n)g′ (n) ≥ g(n)g′ f (n) ≥ (n)g′

20

TricksTricks

If f(n) ≥ g′(n) and g′(n) ≥ g(n) then f(n) ≥ g′(n)

Lesson: To show f(n) ≥ cg(n), you can instead show:

20

TricksTricks

If f(n) ≥ g′(n) and g′(n) ≥ g(n) then f(n) ≥ g′(n)

Lesson: To show f(n) ≥ cg(n), you can instead show:

1. f(n) ≥ cg′(n)

20

TricksTricks

If f(n) ≥ g′(n) and g′(n) ≥ g(n) then f(n) ≥ g′(n)

Lesson: To show f(n) ≥ cg(n), you can instead show:

1. f(n) ≥ cg′(n)

2. cg′(n) ≥ cg(n)

20

TricksTricks
If and thenf (n) ≥ g(n) (n) ≥ (n)f ′ g′

f (n) + (n) ≥ g(n) + (n)f ′ g′

21

TricksTricks

If f(n) ≥ g(n) and f′(n) ≥ g′(n) then f(n) + f′(n) ≥ g(n) + g′(n)

Lesson: To show f(n) + f′(n) ≥ cg(n) + c′g′(n), you can
instead show:

21

TricksTricks

If f(n) ≥ g(n) and f′(n) ≥ g′(n) then f(n) + f′(n) ≥ g(n) + g′(n)

Lesson: To show f(n) + f′(n) ≥ cg(n) + c′g′(n), you can
instead show:

1. f(n) ≥ cg(n)

21

TricksTricks

If f(n) ≥ g(n) and f′(n) ≥ g′(n) then f(n) + f′(n) ≥ g(n) + g′(n)

Lesson: To show f(n) + f′(n) ≥ cg(n) + c′g′(n), you can
instead show:

1. f(n) ≥ cg(n)

2. f′(n) ≥ c′g′(n)

21

TricksTricks

 (for any)
 for any

 for any
 for sufficiently large

log(n) ≥ c n ≥ 2c

n ≥ log(n) n ≥ 0

≥ nn2 n ≥ 1

≥2n nc n

22

ExamplesExamples

+ 4n ∈ Θ()?2n n2

23

ExamplesExamples

2n + 4n ∈ Θ(n2)?

2n + 4n ∈ Θ(n)?

23

ExamplesExamples

2n + 4n ∈ Θ(n2)?

2n + 4n ∈ Θ(n)?

1000nlog(n) + 5n ∈ Θ(nlog(n))?

23

Shortcut: Find the dominant term being summed, and
remove constants.

24

Asymptotic RuntimeAsymptotic Runtime

25

We write to mean a runtime growth function.T(n)

26

In data structures, is usually the number of elements in a
collection.

n

27

ExamplesExamples
What is the asymptotic runtime of...

28

ExamplesExamples
What is the asymptotic runtime of...

...find x in a Linked List?

28

ExamplesExamples
What is the asymptotic runtime of...

...find x in a Linked List?

...counting the number of times x appears in a Linked
List?

28

ExamplesExamples
What is the asymptotic runtime of...

...find x in a Linked List?

...counting the number of times x appears in a Linked
List?
...using multiplication to compute Factorial?

28

Common RuntimesCommon Runtimes

Constant Time:
e.g., (runtime is independent of)

Logarithmic Time:
e.g., (for some constant)

Linear Time:
e.g., (for some constants)

Quadratic Time:
e.g.,

Polynomial Time: (for some)
e.g.,

Exponential Time: (for some)

Θ(1)
T(n) = c n

Θ(log(n))
T(n) = c log(n) c

Θ(n)
T(n) = n +c1 c0 ,c0 c1

Θ()n2

T(n) = + n +c2n
2

c1 c0

Θ()nk k ∈ ℤ
+

T(n) = + … + n +ckn
k

c1 c0

Θ()cn c ≥ 1

29

Big-O, Big-ΩBig-O, Big-Ω

30

What is the asymptotic runtime of...

...looking up an element in an Array?

31

What is the asymptotic runtime of...

...looking up an element in an Array?
The runtime depends on where the item is in the list.

31

 for(i <- 0 until data.size)
 {
 if(data(i) == target){ return i }
 }
 return NOT_FOUND

32

What is the runtime growth function?

 for(i <- 0 until data.size)
 {
 if(data(i) == target){ return i }
 }
 return NOT_FOUND

32

T(n) =

⎧

⎩

⎨

⎪
⎪
⎪

⎪
⎪
⎪

ℓ

2ℓ

3ℓ

…

(n − 1)ℓ

nℓ

if data(0) == target

if data(1) == target

if data(2) == target

…

if data(n − 1) == target

otherwise

33

Aside: No general, meaningful notion of limit for s like
this.

T(n)

34

??
If we choose , we can show (for any)

TT((nn)) ∈∈ ΘΘ((nn))

c = ℓ T(n) ≤ c ⋅ n n

35

TT((nn)) ∈∈ ΘΘ((nn))??
If we choose c = ℓ, we can show T(n) ≤ c ⋅ n (for any n)

... but there is no c s.t. T(n) ≥ c ⋅ n always!

35

TT((nn)) ∈∈ ΘΘ((nn))??
If we choose c = ℓ, we can show T(n) ≤ c ⋅ n (for any n)

... but there is no c s.t. T(n) ≥ c ⋅ n always!

... T(1000000) could be as small as ℓ,
so T(1000000) ≱ 1000000ℓ

35

??
If we choose , we can show (for any)

TT((nn)) ∈∈ ΘΘ((11))

c = ℓ T(n) ≥ c ⋅ 1 n

36

TT((nn)) ∈∈ ΘΘ((11))??
If we choose c = ℓ, we can show T(n) ≥ c ⋅ 1 (for any n)

... but there is no c s.t. T(n) ≤ c ⋅ 1 always!

36

TT((nn)) ∈∈ ΘΘ((11))??
If we choose c = ℓ, we can show T(n) ≥ c ⋅ 1 (for any n)

... but there is no c s.t. T(n) ≤ c ⋅ 1 always!

... T(1000000) could be as big as 1000000ℓ,
so T(1000000) ≰ ℓ

36

Problem: What if doesn't bound
from both above and below?

g(n) f (n)

37

 if input = 1:
 /* take 1 step */
 else:
 /* take n steps */

38

Schroedinger's Code: Simultaneously behaves like
f1(n) = 1 and f2(n) = n (can't tell until runtime)

 if input = 1:
 /* take 1 step */
 else:
 /* take n steps */

38

Upper, Lower BoundsUpper, Lower Bounds

"Worst-Case Complexity"
 is the set of functions that are in 's

complexity class, or a "smaller" class.
"Best-Case Complexity"

 is the set of functions that are in 's
complexity class, or a "bigger" class.

O(g(n)) g(n)

Ω(g(n)) g(n)

39

Big-OBig-O
 iff...

 s.t. ,

f (n) ∈ O(g(n))

∃ ,chigh n0 ∀n > n0 f (n) ≤ ⋅ g(n)chigh

40

Big-OBig-O
f(n) ∈ O(g(n)) iff...

∃chigh, n0 s.t. ∀n > n0, f(n) ≤ chigh ⋅ g(n)

There is some chigh that we can multiply g(n) by so that f(n) is
always smaller than chighg(n) for values of n above some n0

40

ExamplesExamples

+ 4n ∈ O()?2n n2

41

ExamplesExamples

2n + 4n ∈ O(n2)?

2n + 4n ∈ O(n4 + 8n3)?

41

ExamplesExamples

2n + 4n ∈ O(n2)?

2n + 4n ∈ O(n4 + 8n3)?

nlog(n) + 5n ∈ O(n2 + 5n)?

41

Big-ΩBig-Ω
 iff...

 s.t. ,

f (n) ∈ Ω(g(n))

∃ ,clow n0 ∀n > n0 f (n) ≥ ⋅ g(n)clow

42

Big-ΩBig-Ω
f(n) ∈ Ω(g(n)) iff...

∃clow, n0 s.t. ∀n > n0, f(n) ≥ clow ⋅ g(n)

There is some clow that we can multiply g(n) by so that f(n) is
always smaller than clowg(n) for values of n above some n0

42

ExamplesExamples

+ 4n ∈ Ω(+ 5)?2n n2

43

ExamplesExamples

2n + 4n ∈ Ω(n2 + 5)?

2n + 4n ∈ Ω(log(n))?

43

ExamplesExamples

2n + 4n ∈ Ω(n2 + 5)?

2n + 4n ∈ Ω(log(n))?

nlog(n) + 5n ∈ Ω(nlog(n))?

43

RecapRecap

Big-O: "Worst Case" bound
 is the functions that bounds from above

Big-Ω: "Best Case" bound
 is the functions that bounds from below

Big-ϴ: "Tight" bound
 is the functions that bounds from both above and

below

O(g(n)) g(n)

Ω(g(n)) g(n)

Θ(g(n)) g(n)

44

RecapRecap

Big-O: "Worst Case" bound
O(g(n)) is the functions that g(n) bounds from above

Big-Ω: "Best Case" bound
Ω(g(n)) is the functions that g(n) bounds from below

Big-ϴ: "Tight" bound
Θ(g(n)) is the functions that g(n) bounds from both above and below

f(n) ∈ Θ(g(n)) ↔ f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))

44

RecapRecap

Big-O: "Worst Case" bound
If , then the runtime is no worse than

Big-Ω: "Best Case" bound
If , then the runtime is no better than

Big-ϴ: "Tight" bound
If , then the runtime is always

 ↔ and

T(n) ∈ O(g(n)) g(n)

T(n) ∈ Ω(g(n)) g(n)

T(n) ∈ Θ(g(n)) g(n)

f (n) ∈ Θ(g(n)) f (n) ∈ O(g(n))
f (n) ∈ Ω(g(n))

45

