CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu 208 Capen Hall

Runtime Analysis - Examples

Announcements

- PA1 is out, due on Sunday
- Autolab will be up by tonight

Recap of Runtime Complexity

Big-©

- Growth functions are in the same complexity class
- If $f(n) \in \boldsymbol{\Theta}(g(n))$ then an algorithm taking $f(n)$ steps is as "exactly" as fast as one that takes $g(n)$ steps.

Big-0

- Growth functions in the same or smaller complexity class.
- If $f(n) \in O(g(n))$, then an algorithm that takes $f(n)$ steps is at least as fast as one taking $g(n)$ (but it may be even faster).

Big- Ω

- Growth functions in the same or bigger complexity class
- If $f(n) \in \boldsymbol{\Omega}(g(n))$, then an algorithm that takes $f(n)$ steps is at least as slow as one that takes $g(n)$ steps (but it may be even slower)

Recap of Runtime Complexity

Big-© - Tight Bound

- Growth functions are in the same complexity class
- If $f(n) \in \boldsymbol{\Theta}(g(n))$ then an algorithm taking $f(n)$ steps is as "exactly" as fast as one that takes $g(n)$ steps.

Big-0 - Upper Bound

- Growth functions in the same or smaller complexity class.
- If $f(n) \in O(g(n))$, then an algorithm that takes $f(n)$ steps is at least as fast as one taking $g(n)$ (but it may be even faster).

Big- $\mathbf{\Omega}$ - Lower Bound

- Growth functions in the same or bigger complexity class
- If $f(n) \in \boldsymbol{\Omega}(g(n))$, then an algorithm that takes $f(n)$ steps is at least as slow as one that takes $g(n)$ steps (but it may be even slower)

Common Runtimes (in order of complexity)

Constant Time: $\quad \Theta(1)$
Logarithmic Time: $\Theta(\log (n))$
Linear Time:
$\Theta(n)$
Quadratic Time: $\quad \Theta\left(\mathrm{n}^{2}\right)$
Polynomial Time: $\quad \Theta\left(n^{k}\right)$ for some $\mathbf{k}>0$
Exponential Time: $\quad \Theta\left(c^{n}\right)($ for some $c \geq 1)$

Common Runtimes (in order of complexity)

Constant Time:
$\Theta(1)$
Logarithmic Time: ©(log(n))
Linear Time:
Quadratic Time: $\quad \boldsymbol{\Theta}\left(\mathrm{n}^{2}\right)$
Polynomial Time: $\quad \boldsymbol{\Theta}\left(\mathrm{n}^{\mathrm{k}}\right)$ for some $\mathrm{k} \boldsymbol{>} \mathbf{0}$
Exponential Time: $\boldsymbol{\Theta}\left(c^{n}\right)($ for some $c \geq 1)$

$$
\begin{aligned}
& T(n)=c \\
& T(n)=c \log (n) \\
& T(n)=c_{1} n+c_{0} \\
& T(n)=c_{2} n^{2}+c_{1} n^{1}+c_{0} \\
& T(n)=c_{k} n^{k}+\ldots+c_{1} n+c_{0}
\end{aligned}
$$

$$
T(n)=c^{n}
$$

Constants vs Asymptotics

Given the following pseudocode:
for (i $\leftarrow 0$ until n) \{ /* do work */ \}
If the /* do work */ portion of the code originally takes 10 steps...
But we optimize it to now take 7 steps...
Our total runtime goes from 10 n steps to 7 n steps: 30% faster!

c and n_{0}

Compare the two runtimes:

$$
\begin{gathered}
T_{1}(n)=100 n \\
T_{2}(n)=n^{2}
\end{gathered}
$$

- $100 n \in O\left(n^{2}\right)\left(T_{2}\right.$ is the slower runtime $)$
- ...but consider if $c_{\text {high }}=1, n_{0}=100$
- Until our input size reaches 100 or more, T_{2} is the faster runtime

Takeaways

Asymptotically slower runtimes can be better in real-world situations.

- An algorithm with runtime T_{2} is better on small inputs
- An algorithm with runtime T_{2} might be easier to implement/maintain
- An algorithm with runtime T_{1} might not exists

Takeaways

Asymptotically slower runtimes can be better in real-world situations.

- An algorithm with runtime T_{2} is better on small inputs
- An algorithm with runtime T_{2} might be easier to implement/maintain
- An algorithm with runtime T_{1} might not exists
(sometimes this is provable...see CSE 331)

Takeaways

The important thing is learning the tools to reason about the different algorithms and why you might choose one over the other!

Takeaways

The important thing is learning the tools to reason about the different algorithms and why you might choose one over the other!
...But for this class, we can assume that if $T_{2}(n)$ is in a bigger complexity class, then $T_{1}(n)$ is better/faster/stronger.

Now some examples... ...and common pitfalls

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i }\leftarrown-2 to 0, by -1:
4 for j}\leftarrow i to n-1
5 if seq(j+1) < seq(j):
swap seq(j) and seq(j+1)
```

What is the runtime complexity class for bubblesort?

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i }\leftarrown-2 to 0, by -1:
4 for j}\leftarrow i to n-1
5 if seq(j+1) < seq(j):
swap seq(j) and seq(j+1)
```

What is the runtime complexity class for bubblesort? How many steps does it take?

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i }\leftarrown-2 to 0, by -1:
4 for j}\leftarrow i to n-1
5 if seq(j+1) < seq(j):
6
        swap seq(j) and seq(j+1)
```

What is the runtime complexity class for bubblesort? How times does it execute lines 5 and 6?

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i \leftarrow n-2 to 0, by -1:
for j \leftarrow i to n-1:
5 if seq(j+1) < seq(j):
6 swap seq(j) and seq(j+1)
```

```
This loop has 1 iteration when i = n-2
    ... }2\mathrm{ iterations when i = n-3
    ... }3\mathrm{ iterations when i = n-4
n-1 iterations when i=0
```

What is the runtime complexity class for bubblesort? How times does it execute lines 5 and 6?

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i \leftarrow n-2 to 0, by -1:
for j \leftarrow i to n-1:
5 if seq(j+1) < seq(j):
6 swap seq(j) and seq(j+1)
```

```
This loop has }1\mathrm{ iteration when i= n-2
...2 iterations when i=n-3
... }3\mathrm{ iterations when i = n-4
n-1 iterations when i=0
```

What is the runtime complexity class for bubblesort?
How times does it execute lines 5 and 6 ? $1+2+3+4+5 \ldots+n-1$

1. $\sum_{i=j}^{k} c=(k-j+1) c$
2. $\sum_{i=j}^{k}(c f(i))=c \sum_{i=j}^{k} f(i)$

Helpful Summation Rules

3. $\sum_{i=j}^{k}(f(i)+g(i))=\left(\sum_{i=j}^{k} f(i)\right)+\left(\sum_{i=j}^{k} g(i)\right)$
4. $\sum_{i=j}^{k}(f(i))=\left(\sum_{i=\ell}^{k}(f(i))\right)-\left(\sum_{i=\ell}^{j-1}(f(i))\right)$ (for any $\ell<j$)
5. $\sum_{i=j}^{k} f(i)=f(j)+f(j+1)+\ldots+f(k-1)+f(k)$
6. $\sum_{i=j}^{k} f(i)=f(j)+\ldots+f(\ell-1)+\left(\sum_{i=\ell}^{k} f(i)\right)$ (for any $j<\ell \leq k$)
7. $\sum_{i=j}^{k} f(i)=\left(\sum_{i=j}^{\ell} f(i)\right)+f(\ell+1)+\ldots+f(k)$ (for any $j \leq \ell<k$)
8. $\sum_{i=1}^{k} i=\frac{k(k+1)}{2}$
9. $\sum_{i=0}^{k} 2^{i}=2^{k+1}-1$
10. $n!\leq c_{s} n^{n}$ is a tight upper bound (Sterling: Some constant c_{s} exists)

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i }\leftarrow\textrm{n}-2\mathrm{ to 0, by -1:
4 for j }\leftarrow i to n-1
5 if seq(j+1) < seq(j):
6 swap seq(j) and seq(j+1)
```

```
This loop has 1 iteration when i=n-2
... }2\mathrm{ iterations when i = n-3
...3 iterations when i = n-4
n-1 iterations when i=0
```

What is the runtime complexity class for bubblesort?
How times does it execute lines 5 and 6?

$$
1+2+3+4+5 \ldots+n-1=(n) *(n-1) / 2=0\left(n^{2}\right)
$$

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i }\leftarrown-2 to 0, by -1:
4 for j}\leftarrow i to n-1
5 if seq(j+1) < seq(j):
6
        swap seq(j) and seq(j+1)
```

Note: We can ignore the exact number of steps required by a portion of the algorithm, as long as we know its complexity...

Bubble Sort

1 bubblesort(seq: Seq[Int]):
$2 \quad \mathrm{n} \leftarrow \mathrm{seq}$ length
3 for $i \leftarrow n-2$ to 0 , by -1 :
4 for $\mathbf{j} \leftarrow \mathbf{i}$ to $n-1$:
5
6
if seq(j+1) < seq(j):

Lines 5-6 are executed exactly n-1 times, but we can treat this as $O(n)$ steps for the inner loop...or can we...?
swap seq(j) and seq(j+1)

Note: We can ignore the exact number of steps required by a portion of the algorithm, as long as we know its complexity...

Bubble Sort

1 bubblesort(seq: Seq[Int]):
$2 \quad n \leftarrow$ seq length
3 for $i \leftarrow n-2$ to 0 , by -1 :
$4 \quad$ for $j \leftarrow i$ to $n-1$:
5
6
if seq(j+1) < seq(j):
swap seq(j) and seq(j+1)
Lines 5-6 are executed exactly n-1 times, but we can treat this as $O(n)$ steps for the inner loop... or can we...?

Note: We can ignore the exact number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta\left(\mathrm{n}^{2}\right)$?

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i }\leftarrown-2 to 0, by -1:
4 for j }
5 if seq(j+1) < seq(j):
6 swap seq(j) and seq(j+1)
```

What is the complexity of this step?

Note: We can ignore the exact number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta\left(\mathrm{n}^{2}\right)$?

Bubble Sort

```
1 bubblesort(seq: Seq[Int]):
2 n \leftarrow seq length
3 for i }\leftarrown-2 to 0, by -1
4 for j }\leftarrow i to n-1
5 if seq(j+1) < seq(j):
6
        swap seq(j) and seq(j+1)
```

What is the complexity of this step?
Do not assume function calls take $\mathbf{O}(1)$ time!

Note: We can ignore the exact number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta\left(\mathrm{n}^{2}\right)$?

Searching Sequences

```
def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
    for(i <- from until seq.length) {
    if(seq(i).equals(value)) { return i }
    }
    return -1
}
What is the complexity?
```


Searching Sequences

```
def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
    for(i <- from until seq.length) {
    if(seq(i).equals(value)) { return i }
    }
    return -1
}
What is the complexity? \(O(n)\)
```


Searching Sequences

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while(i != -1) {
        count += 1;
        i = indexOf(seq, value, i+1)
    }
    return count
}
```

What is the complexity?

Searching Sequences

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while(i != -1) {
        count += 1;
        i = indexOf(seq, value, i+1)
    }
    return count
}
```

What is the complexity? $O(n)$?

Searching Sequences

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while(i != -1) {
        count += 1;
            i = indexOf(seq, value, i+1)
    }
    return count
}
```

What is the complexity? $\mathrm{O}(\mathrm{n})$? What about this line?

Searching Sequences

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while(i != -1) {
        count += 1;
        i = indexOf(seq, value, i+1)
    }
    return count
}
```

What is the complexity? $O(n)$? What about this line? How many while iterations?

Searching Sequences

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while(i != -1) {
        count += 1;
        i = indexOf(seq, value, i+1)
    }
    return count
}
```

What is the complexity? Each element is only checked once, so O(n).

Searching Sorted Sequences

- Assuming $O(1)$ access to elements ('random access')
- Divide the set of elements in half by taking the "middle" element, m
- If m is greater than what we are looking for, search the lower half

■ If m is less than what we are looking for, search the right half

- Repeat until you've found the element or you can't divide in half

Searching Sorted Sequences

- Assuming $O(1)$ access to elements ('random access')
- Divide the set of elements in half by taking the "middle" element, m
- If m is greater than what we are looking for, search the lower half
- If m is less than what we are looking for, search the right half

■ Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half?

Searching Sorted Sequences

- Assuming $O(1)$ access to elements ('random access')
- Divide the set of elements in half by taking the "middle" element, m
- If m is greater than what we are looking for, search the lower half
- If m is less than what we are looking for, search the right half
- Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half? $\log (n)$

Searching Sorted Sequences

- Assuming $0(1)$ access to elements ('random access')
- Divide the set of elements in half by taking the "middle" element, m
- If m is greater than what we are looking for, search the lower half

■ If m is less than what we are looking for, search the right half
■ Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half? $\log (n)$

Therefore the runtime of this search algorithm is $O(\log (n))$

