CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Runtime Analysis - Examples

Announcements

- PA1 is out, due on Sunday
 - Autolab will be up by tonight

Recap of Runtime Complexity

Big-**⊕**

- Growth functions are in the same complexity class
- If $f(n) \in \Theta(g(n))$ then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n) steps.

Big-O

- Growth functions in the same or smaller complexity class.
- If $f(n) \in O(g(n))$, then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it may be even faster).

$Big-\Omega$

- Growth functions in the same or bigger complexity class
- If $f(n) \in \Omega(g(n))$, then an algorithm that takes f(n) steps is at least as slow as one that takes g(n) steps (but it may be even slower)

Recap of Runtime Complexity

Big-⊕ – Tight Bound

- Growth functions are in the same complexity class
- If $f(n) \in \Theta(g(n))$ then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n) steps.

Big-O — Upper Bound

- Growth functions in the same or smaller complexity class.
- If $f(n) \in O(g(n))$, then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it may be even faster).

$Big-\Omega$ — Lower Bound

- Growth functions in the same or bigger complexity class
- If $f(n) \in \Omega(g(n))$, then an algorithm that takes f(n) steps is at least as slow as one that takes g(n) steps (but it may be even slower)

Common Runtimes (in order of complexity)

Constant Time: $\Theta(1)$

Logarithmic Time: $\Theta(\log(n))$

Linear Time: $\Theta(n)$

Quadratic Time: $\Theta(n^2)$

Polynomial Time: $\Theta(n^k)$ for some k > 0

Exponential Time: $\Theta(c^n)$ (for some $c \ge 1$)

Common Runtimes (in order of complexity)

Constant Time: $\Theta(1)$ T(n) = c

Logarithmic Time: $\Theta(\log(n))$ $T(n) = c \log(n)$

Linear Time: $\Theta(n)$ $T(n) = c_1 n + c_0$

Quadratic Time: $\Theta(n^2)$ $T(n) = c_2 n^2 + c_1 n^1 + c_0$

Polynomial Time: $\Theta(n^k)$ for some k > 0 $T(n) = c_k n^k + ... + c_1 n + c_0$

Exponential Time: $\Theta(c^n)$ (for some $c \ge 1$) $T(n) = c^n$

Constants vs Asymptotics

Given the following pseudocode:

```
for (i \leftarrow 0 until n) { /* do work */ }
```

If the /* do work */ portion of the code originally takes 10 steps...

But we optimize it to now take 7 steps...

Our total runtime goes from 10n steps to 7n steps: 30% faster!

...but still $\Theta(n)$

c and n_o

Compare the two runtimes:

$$T_1(n) = 100n$$

$$T_2(n) = n^2$$

- $100n \in O(n^2)$ (T_2 is the slower runtime)
- ...but consider if $c_{high} = 1$, $n_0 = 100$
- Until our input size reaches 100 or more, T_2 is the **faster** runtime

Asymptotically slower runtimes can be better in real-world situations.

- An algorithm with runtime T_2 is better on small inputs
- An algorithm with runtime T_2 might be easier to implement/maintain
- An algorithm with runtime T_1 might not exists

Asymptotically slower runtimes can be better in real-world situations.

- An algorithm with runtime T_2 is better on small inputs
- An algorithm with runtime T_2 might be easier to implement/maintain
- An algorithm with runtime T_1 might not exists

(sometimes this is provable...see CSE 331)

The important thing is learning the tools to *reason* about the different algorithms and *why* you might choose one over the other!

The important thing is learning the tools to *reason* about the different algorithms and *why* you might choose one over the other!

...But for this class, we can assume that if $T_2(n)$ is in a bigger complexity class, then $T_1(n)$ is better/faster/stronger.

Now some examples... ...and common pitfalls

```
1 bubblesort(seq: Seq[Int]):
2    n ← seq length
3    for i ← n-2 to 0, by -1:
4     for j ← i to n-1:
5         if seq(j+1) < seq(j):
6         swap seq(j) and seq(j+1)</pre>
```

What is the runtime complexity class for bubblesort?

```
1 bubblesort(seq: Seq[Int]):
2    n ← seq length
3    for i ← n-2 to 0, by -1:
4     for j ← i to n-1:
5         if seq(j+1) < seq(j):
6         swap seq(j) and seq(j+1)</pre>
```

What is the runtime complexity class for bubblesort? How many steps does it take?

```
1 bubblesort(seq: Seq[Int]):
2    n ← seq length
3    for i ← n-2 to 0, by -1:
4     for j ← i to n-1:
5         if seq(j+1) < seq(j):
6         swap seq(j) and seq(j+1)</pre>
```

What is the runtime complexity class for bubblesort? How times does it execute lines 5 and 6?

```
1 bubblesort(seq: Seq[Int]):
2  n ← seq length
3  for i ← n-2 to 0, by -1:
4  for j ← i to n-1:
5   if seq(j+1) < seq(j):
6   swap seq(j) and seq(j+1)</pre>
This loop has 1 iteration when i = n-2
...2 iterations when i = n-3
...3 iterations when i = n-4
...
n-1 iterations when i = 0
```

What is the runtime complexity class for bubblesort? How times does it execute lines 5 and 6?

```
1 bubblesort(seq: Seq[Int]):
2  n ← seq length
3  for i ← n-2 to 0, by -1:
4     for j ← i to n-1:
5         if seq(j+1) < seq(j):
6         swap seq(j) and seq(j+1)</pre>
This loop has 1 iteration when i = n-2
...2 iterations when i = n-3
...3 iterations when i = n-4
...
n-1 iterations when i = 0
```

What is the runtime complexity class for bubblesort?

How times does it execute lines 5 and 6? $1 + 2 + 3 + 4 + 5 \dots + n-1$

Rules

2. $\sum_{i=i}^{k} (cf(i)) = c \sum_{i=i}^{k} f(i)$

1. $\sum_{i=1}^{k} c = (k-j+1)c$

3.
$$\sum_{i=j}^{k} (f(i) + g(i)) = \left(\sum_{i=j}^{k} f(i)\right) + \left(\sum_{i=j}^{k} g(i)\right)$$

4.
$$\sum_{i=j}^{k} (f(i)) = \left(\sum_{i=\ell}^{k} (f(i))\right) - \left(\sum_{i=\ell}^{j-1} (f(i))\right)$$
 (for any $\ell < j$)

$$f(i) - f(i) + f(i)$$

5.
$$\sum_{i=j}^{k} f(i) = f(j) + f(j+1) + \dots + f(k-1) + f(k)$$

6.
$$\sum_{i=j}^{k} f(i) = f(j) + \dots + f(\ell-1) + \left(\sum_{i=\ell}^{k} f(i)\right)$$
 (for any $j < \ell \le k$)

$$f(i) = (i)$$

7.
$$\sum_{i=j}^{k} f(i) = \left(\sum_{i=j}^{\ell} f(i)\right) + f(\ell+1) + \dots + f(k)$$
 (for any $j \le \ell < k$)

$$\sum_{i=j}^{k} J(i) = \sum_{i=j}^{k} J(i) = \sum_{i=j}^{k}$$

$$i = \frac{k(k+1)}{2}$$

8.
$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$

9.
$$\sum_{i=0}^{k} 2^{i} = 2^{k+1} - 1$$

10. $n! \le c_s n^n$ is a tight upper bound (Sterling: Some constant c_s exists)

```
1 bubblesort(seq: Seq[Int]):
2  n ← seq length
3  for i ← n-2 to 0, by -1:
4    for j ← i to n-1:
5        if seq(j+1) < seq(j):
6        swap seq(j) and seq(j+1)</pre>
This loop has 1 iteration when i = n-2
...2 iterations when i = n-3
...3 iterations when i = n-4
...
n-1 iterations when i = 0
```

What is the runtime complexity class for bubblesort?

How times does it execute lines 5 and 6?

$$1 + 2 + 3 + 4 + 5 \dots + n-1 = (n) * (n - 1) / 2 = O(n^2)$$

```
1 bubblesort(seq: Seq[Int]):
2    n ← seq length
3    for i ← n-2 to 0, by -1:
4     for j ← i to n-1:
5         if seq(j+1) < seq(j):
6         swap seq(j) and seq(j+1)</pre>
```

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

```
1 bubblesort(seq: Seq[Int]):
2  n ← seq length
3  for i ← n-2 to 0, by -1:
4  for j ← i to n-1:
5   if seq(j+1) < seq(j):
6   swap seq(j) and seq(j+1)</pre>
Lines 5-6 are executed exactly n-1 times, but we can treat this as O(n) steps for the inner loop...or can we...?
```

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

```
1 bubblesort(seq: Seq[Int]):
2  n ← seq length
3  for i ← n-2 to 0, by -1:
4  for j ← i to n-1:
5   if seq(j+1) < seq(j):
6   swap seq(j) and seq(j+1)</pre>
Lines 5-6 are executed exactly n-1 times, but we can treat this as O(n) steps for the inner loop...or can we...?
```

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta(n^2)$?

```
1 bubblesort(seq: Seq[Int]):
2  n ← seq length
3  for i ← n-2 to 0, by -1:
4   for j ← i to n-1:
5          if seq(j+1) < seq(j):
                swap seq(j) and seq(j+1)
</pre>
What is the complexity of this step?
```

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta(n^2)$?

Note: We can ignore the *exact* number of steps required by a portion of the algorithm, as long as we know its complexity...

Can we safely say this algorithm is $\Theta(n^2)$?

```
def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
    for(i <- from until seq.length) {</pre>
      if(seq(i).equals(value)) { return i }
    return -1
What is the complexity?
```

```
def indexOf[T] (seq: Seq[T], value: T, from: Int): Int = {
    for(i <- from until seq.length) {</pre>
      if(seq(i).equals(value)) { return i }
    return -1
What is the complexity? O(n)
```

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while(i !=-1) {
        count += 1;
        i = indexOf(seq, value, i+1)
    return count
What is the complexity?
```

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while (i !=-1) {
        count += 1;
        i = indexOf(seq, value, i+1)
    return count
What is the complexity? O(n)?
```

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while (i !=-1) {
        count += 1;
        i = indexOf(seq, value, i+1)
    return count
What is the complexity? O(n)? What about this line?
```

```
def count[T](seq: Seq[T], value: T): Int ={
   var count = 0;
   var i = indexOf(seq, value, 0)
   while(i != -1) {
      count += 1;
      i = indexOf(seq, value, i+1)
   }
   return count
}
```

What is the complexity? O(n)? What about this line? How many while iterations?

```
def count[T](seq: Seq[T], value: T): Int ={
    var count = 0;
    var i = indexOf(seq, value, 0)
    while (i !=-1) {
        count += 1;
        i = indexOf(seq, value, i+1)
    return count
What is the complexity? Each element is only checked once, so O(n).
```

- Assuming O(1) access to elements ('random access')
 - Divide the set of elements in half by taking the "middle" element, m
 - If m is greater than what we are looking for, search the lower half
 - If *m* is less than what we are looking for, search the right half
 - Repeat until you've found the element or you can't divide in half

- Assuming O(1) access to elements ('random access')
 - Divide the set of elements in half by taking the "middle" element, m
 - If m is greater than what we are looking for, search the lower half
 - If *m* is less than what we are looking for, search the right half
 - Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half?

- Assuming O(1) access to elements ('random access')
 - Divide the set of elements in half by taking the "middle" element, m
 - If m is greater than what we are looking for, search the lower half
 - If *m* is less than what we are looking for, search the right half
 - Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half? log(n)

- Assuming O(1) access to elements ('random access')
 - Divide the set of elements in half by taking the "middle" element, m
 - If m is greater than what we are looking for, search the lower half
 - If *m* is less than what we are looking for, search the right half
 - Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half? log(n)

Therefore the runtime of this search algorithm is $O(\log(n))$