
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Collections, Sequences and ADTs
Textbook Ch. 7.1, 1.7.2

mailto:epmikida@buffalo.edu

Announcements

● PA1 due Sunday at midnight
○ Be aware that course staff is not guaranteed to be available after 5PM or

on weekends

Sequences (what are they?)

● Examples

Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Characters in a String: 'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd'

Lines in a File

People in a queue

Sequences (what are they?)

● Examples

Fibonacci Sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Characters in a String: 'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd'

Lines in a File

People in a queue

An "ordered" collection of elements

Sequences (what can you do with them?)

● Enumerate every element in sequence
○ ie: print out every element, sum every element

● Get the "nth" element
○ ie: what is the first element? what is the 42nd element?

● Modify the "nth" element
○ ie: set the first element to x, set the third element to y

Abstract Data Types (ADTs)

● The specification of what a data structure can do

ADT

Read everything

Read "nth" element

Update "nth" element

Abstract Data Types (ADTs)

● The specification of what a data structure can do

ADT

Read everything

Read "nth" element

Update "nth" element

What's in the box? …we
don't know, and in some
sense…we don't care

Usage is governed by what we can do, not how it is done

The Seq ADT

apply(idx: Int): [A]
Get the element (of type A) at position idx

iterator: Iterator[A]
Get access to view all elements in the sequence, in order, once

length: Int
Get the number of elements in the seq

The mutable.Seq ADT

apply(idx: Int): [A]
Get the element (of type A) at position idx

iterator: Iterator[A]
Get access to view all elements in the sequence, in order, once

length: Int
Count the number of elements in the seq

insert(idx: Int, elem: A): Unit
Insert an element at position idx with value elem

remove(idx: Int): A
Remove the element at position idx, and return the removed value

So…what's in the box?
(how do we implement it)

A Brief Aside on RAM (220 crossover)

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

Array

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

H e l l o

fixed element size

fixed number of elements

Array

RAM

new T()
Go find some unused part of memory that is big enough to fit a T,
mark it as used, and return the address of that location in memory.

RAM

new T()
Go find some unused part of memory that is big enough to fit a T,
mark it as used, and return the address of that location in memory.

The above code allocates 50 * 4 = 200 bytes of memory
(a single Scala Int takes of 4 bytes in memory)

var arr = new Array[Int](50)

Element Access

If arr is at address a, where should you look for arr(19)?

var arr = new Array[Int](50)

Element Access

If arr is at address a, where should you look for arr(19)?
● a + 19 * 4 (does this computation depend on the size of arr?)

var arr = new Array[Int](50)

Element Access

If arr is at address a, where should you look for arr(19)?
● a + 19 * 4 (does this computation depend on the size of arr?)

○ What is the complexity?

var arr = new Array[Int](50)

Element Access

If arr is at address a, where should you look for arr(19)?
● a + 19 * 4 (does this computation depend on the size of arr?)

○ What is the complexity? 𝚯(1)

var arr = new Array[Int](50)

Random Access for an Array (Lecture 04)

Array

size (n)

ru
nt

im
e

(s
)

Random Access for an Array (Lecture 04)

Array

Notice how our runtime doesn't depend on the size of the array

size (n)

ru
nt

im
e

(s
)

Element Access

If arr is at address a, where should you look for arr(19)?
● a + 19 * 4 (a constant number of steps to compute…)

What about a(55)?

var arr = new Array[Int](50)

Element Access

If arr is at address a, where should you look for arr(19)?
● a + 19 * 4 (a constant number of steps to compute…)

What about a(55)?
● a + 55 * 4 …but that memory was not reserved for this array.
● Scala will prevent you from accessing an out of bounds element

var arr = new Array[Int](50)

Array[T]:Seq[T]

What does an Array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

Array[T]:Seq[T]

What does an Array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

n sizeof(T) a(0) a(1) a(2) a(3) a(4) …

Array[T]:Seq[T]

Given the structure of an Array, how would we implement the methods of the Seq ADT:

apply(idx: Int): [A]
Get the element (of type A) at position idx

length: Int
Count the number of elements in the seq

insert(idx: Int, elem: A): Unit
Insert an element at position idx with value elem

remove(idx: Int): A
Remove the element at position idx, and return the removed value

Array[T]:Seq[T]

Given the structure of an Array, how would we implement the methods of the Seq ADT:

apply(idx: Int): [A]
Get the element (of type A) at position idx

length: Int
Count the number of elements in the seq

insert(idx: Int, elem: A): Unit
Insert an element at position idx with value elem

remove(idx: Int): A
Remove the element at position idx, and return the removed value

Insert and remove don't
make sense on arrays…

How can we make it mutable?

IDEA: What if we reserve extra space?

ArrayBuffer[T]:Buffer[T]

What does an ArrayBuffer of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● 4 bytes for the number of used fields
● n * sizeof(T) bytes for the data

ArrayBuffer[T]:Buffer[T]

What does an ArrayBuffer of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● 4 bytes for the number of used fields
● n * sizeof(T) bytes for the data

n sizeof(T) u
a(1)
or

None
…

a(2)
or

None

a(3)
or

None

a(4)
or

None

