
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Sequences, Arrays, and Array Buffers
Textbook Ch. 6.4

mailto:epmikida@buffalo.edu

Announcements

● PA1 due Sunday @ 11:59PM

Recap

● ADT: Abstract Data Type, defines what a particular data structure can
be used without specifying how it is implemented
○ ie: Seq, mutable.Seq

● Array: A type of sequence with a fixed element size and fixed number
of elements, allocated as a contiguous block of memory
○ Immutable
○ Constant time random access (base + index * element size)

● ArrayBuffer: The mutable form of an array, allows insert and remove

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

Types of Collections in Scala

Iterable - Any collection of items

Seq - A collection of items in a specific order

IndexedSeq - A Seq where there is guaranteed O(1) access to items

Set - A collection of unique items

Map - A collection of items identified by a key (associative collection)

Types of Sequences in Scala

mutable.Seq - Like Seq…..but mutable

mutable.Buffer - Like mutable.Seq, but "efficient" appends.

Queue - Like mutable.Seq but "efficient" append and remove first.
Think like a queue of people

Stack - Like mutable.Seq but "efficient" prepend and remove first.
Think like a stack of papers

The mutable.Seq ADT

apply(idx: Int): [A]
Get the element (of type A) at position idx

iterator: Iterator[A]
Get access to view all elements in the sequence, in order, once

length: Int
Count the number of elements in the seq

insert(idx: Int, elem: A): Unit
Insert an element at position idx with value elem

remove(idx: Int): A
Remove the element at position idx, and return the removed value

Array[T]:Seq[T]

What does an Array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

n sizeof(T) a(0) a(1) a(2) a(3) a(4) …

Challenge: Operations that modify the
array size require copying the array!

Challenge: Operations that modify the
array size require copying the array!

Solution: Reserve extra space!

ArrayBuffer[T]:Buffer[T](:Seq[T])

What does an ArrayBuffer of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● 4 bytes for the number of used fields
● n * sizeof(T) bytes for the data

n sizeof(T) u
a(1)
or

None
…

a(2)
or

None

a(3)
or

None

a(4)
or

None

ArrayBuffer[T]:Buffer[T](:Seq[T])

class ArrayBuffer[T] extends Buffer[T] {
 var used = 0
 var data = Array[Option[T]].fill(INITIAL_SIZE) { None }

 def length = used

 def apply(i: Int): T = {
 if(i < 0 || i >= used){ throw new IndexOutOfBoundsException(i) }
 return data(i).get
 }

 /* ... */
 }
}

What is Option[T]...a brief digression

● Let's say we have a function that we know can possibly return null
● What can go wrong in the following code snippet?

val x = functionThatCanReturnNull()
x.doAThing()

What is Option[T]...a brief digression

● Let's say we have a function that we know can possibly return null
● What can go wrong in the following code snippet?

java.lang.NullPointerException (runtime error)

val x = functionThatCanReturnNull()
x.doAThing()

What is Option[T]...a brief digression

● Let's say we have a function that we know can possibly return null
● What can go wrong in the following code snippet?

It's very easy in practice to miss doing this test!

val x = functionThatCanReturnNull()
if(x == null) { /* do something special */ }
else { x.doAThing() }

What is Option[T]...a brief digression

● What if instead that function returns something called an Option?

error: value doAThing is not a member of Option[MyClass]

val x = functionThatReturnsOption()
x.doAThing()

What is Option[T]...a brief digression

● What if instead that function returns something called an Option?

error: value doAThing is not a member of Option[MyClass]

Now it's a compile time error…Easier to catch

val x = functionThatReturnsOption()
x.doAThing()

What is Option[T]...a brief digression

● But what is an Option (in Scala)?

Some(x)
Subclass of Option[T]
value.isDefined == true
A valid value exists and we can access it with value.get

None
Subclass of Option[T]
value.isEmpty == true
Analogous to null. No value.

Now back to ArrayBuffers…

ArrayBuffer[T]:Buffer[T](:Seq[T])

class ArrayBuffer[T] extends Buffer[T] {
 var used = 0
 var data = Array[Option[T]].fill(INITIAL_SIZE) { None }

 def length = used

 def apply(i: Int): T = {
 if(i < 0 || i >= used){ throw new IndexOutOfBoundsException(i) }
 return data(i).get
 }

 /* ... */
 }
}

ArrayBuffer.remove(i)

def remove(target: Int): T = {
 /* Sanity-check inputs */
 if(target < 0 || target >= used) {
 throw new IndexOutOfBoundsException(target)
 }
 /* Shift elements left */
 for(i <- target until (used-1)) {
 data(i) = data(i+1)
 }
 /* Update metadata */
 data(used-1) = None
 used -= 1
}

ArrayBuffer.remove(i)

def remove(target: Int): T = {
 /* Sanity-check inputs */
 if(target < 0 || target >= used) {
 throw new IndexOutOfBoundsException(target)
 }
 /* Shift elements left */
 for(i <- target until (used-1)) {
 data(i) = data(i+1)
 }
 /* Update metadata */
 data(used-1) = None
 used -= 1
}

What is the complexity?

ArrayBuffer.remove(i)

def remove(target: Int): T = {
 /* Sanity-check inputs */
 if(target < 0 || target >= used) {
 throw new IndexOutOfBoundsException(target)
 }
 /* Shift elements left */
 for(i <- target until (used-1)) {
 data(i) = data(i+1)
 }
 /* Update metadata */
 data(used-1) = None
 used -= 1
}

What is the complexity?
O(data.size)

or
𝚯(used - target)

Analysis of remove(i)

Analysis of remove(i)

Tremove(n) is O(n) and 𝛀(1)

ArrayBuffer.append(elem)

def append(elem: T): Unit = {
 if(used == data.size){ /* Sad case 🙁 */
 /* assume newLength > data.size, but pick it later */
 val newData = Array.copyOf(original = data, newLength = ???)
 /* Array.copyOf doesn't init elements, so we have to */
 for(i <- data.size until newData.size){ newData(i) = None }
 }
 /* Happy case 😃 */
 /* Append element, update data and metadata */
 newData(used) = Some(elem)
 data = newData
 used += 1
}

ArrayBuffer.append(elem)

def append(elem: T): Unit = {
 if(used == data.size){ /* Sad case 🙁 */
 /* assume newLength > data.size, but pick it later */
 val newData = Array.copyOf(original = data, newLength = ???)
 /* Array.copyOf doesn't init elements, so we have to */
 for(i <- data.size until newData.size){ newData(i) = None }
 }
 /* Happy case 😃 */
 /* Append element, update data and metadata */
 newData(used) = Some(elem)
 data = newData
 used += 1
}

What is the complexity?

…and what is newLength?

ArrayBuffer.append(elem)

def append(elem: T): Unit = {
 if(used == data.size){ /* Sad case 🙁 */
 /* assume newLength > data.size, but pick it later */
 val newData = Array.copyOf(original = data, newLength = ???)
 /* Array.copyOf doesn't init elements, so we have to */
 for(i <- data.size until newData.size){ newData(i) = None }
 }
 /* Happy case 😃 */
 /* Append element, update data and metadata */
 newData(used) = Some(elem)
 data = newData
 used += 1
}

What is the complexity?
O(data.size) (ie O(n)) …but…

Analysis of append(elem)

Analysis of append(elem)

Tappend(n) is O(n) and 𝛀(1)

Analysis of append(elem)

Tappend(n) is O(n) and 𝛀(1)

How often do we hit the 🙁 case?

🙁 case
😃 case

Analysis of append(elem)

Tappend(n) is O(n) and 𝛀(1)

How often do we hit the 🙁 case?
Depends on newLength

🙁 case
😃 case

A Note on Runtime Complexity

So far, when we've discussed runtime bounds we have done so without
taking any extra information/context into account.

For example, the worst-case runtime of ArrayBuffer.append is O(n)

We haven't considered the fact that oftentimes it is faster than O(n)

A Note on Runtime Complexity

So far, when we've discussed runtime bounds we have done so without
taking any extra information/context into account.

For example, the worst-case runtime of ArrayBuffer.append is O(n)

We haven't considered the fact that oftentimes it is faster than O(n)

We refer to this as the unqualified runtime…it is the runtime without any
extra qualifications, caveats, etc

A Note on Runtime Complexity

So far, when we've discussed runtime bounds we have done so without
taking any extra information/context into account.

For example, the worst-case runtime of ArrayBuffer.append is O(n)

We haven't considered the fact that oftentimes it is faster than O(n)

We refer to this as the unqualified runtime…it is the runtime without any
extra qualifications, caveats, etc

But, sometimes the extra context can be relevant…
how can we include this in our analysis?

Analysis of append(elem)

Tappend(n) is O(n) and 𝛀(1)

How often do we hit the 🙁 case?
Depends on newLength…how should we calculate newLength?

🙁 case
😃 case

newLength = data.size + 1

𝚯(1) 𝚯(1) 𝚯(1) 𝚯(1) 𝚯(1) 𝚯(1)

𝚯(n) 𝚯(n)
𝚯(n) 𝚯(n)

… …
 1 2 3 4 X-1 X X+1 X+2 n-1 n

Assume the initial size of our array is X, and we want to insert n items in a row

newLength = data.size + 1

For n appends into an empty buffer…

While used <= Initial_Size:

And after:

newLength = data.size + 1

For n appends into an empty buffer…

While used <= Initial_Size:

And after:

Total: 𝚯(n2)

newLength = data.size * 2

𝚯(1) 𝚯(1) 𝚯(1)… …
 1 X X+1 X+2 2X 2X+1 2X+2 n-1 n

𝚯(1) 𝚯(1)…𝚯(1)

𝚯
(X*2)𝚯

(X)

𝚯
(X*4)

newLength = data.size * 2

𝚯(1) 𝚯(1) 𝚯(1)… …
 1 X X+1 X+2 2X 2X+1 2X+2 n-1 n

𝚯(1) 𝚯(1)…𝚯(1)

𝚯
(X*2)𝚯

(X)

𝚯
(X*4)

newLength = data.size * 2

𝚯(1) 𝚯(1) 𝚯(1)… …
 1 X X+1 X+2 2X 2X+1 2X+2 n-1 n

𝚯(1) 𝚯(1)…𝚯(1)

𝚯
(X*2)𝚯

(X)

𝚯
(X*4)

X * 𝚯(1)
for X appends

newLength = data.size * 2

𝚯(1) 𝚯(1) 𝚯(1)… …
 1 X X+1 X+2 2X 2X+1 2X+2 n-1 n

𝚯(1) 𝚯(1)…𝚯(1)

𝚯
(X*2)𝚯

(X)

𝚯
(X*4)

X * 𝚯(1)
for X appends

𝚯(X) +(X-1)* 𝚯(1)
for X appends

newLength = data.size * 2

𝚯(1) 𝚯(1) 𝚯(1)… …
 1 X X+1 X+2 2X 2X+1 2X+2 n-1 n

𝚯(1) 𝚯(1)…𝚯(1)

𝚯
(X*2)𝚯

(X)

𝚯
(X*4)

X * 𝚯(1)
for X appends

𝚯(X) +(X-1)* 𝚯(1)
for X appends

𝚯(X*2) +(X*2-1)* 𝚯(1)
for X*2 appends

newLength = data.size * 2

So…how many red boxes for n inserts?

newLength = data.size * 2

So…how many red boxes for n inserts? 𝚯(log(n))

newLength = data.size * 2

So…how many red boxes for n inserts? 𝚯(log(n))

How much work for box j?

newLength = data.size * 2

So…how many red boxes for n inserts? 𝚯(log(n))

How much work for box j?

newLength = data.size * 2

So…how many red boxes for n inserts? 𝚯(log(n))

How much work for box j?

newLength = data.size * 2

So…how many red boxes for n inserts? 𝚯(log(n))

How much work for box j?

How much work for n inserts?

newLength = data.size * 2

So…how many red boxes for n inserts? 𝚯(log(n))

How much work for box j?

How much work for n inserts?

newLength = data.size * 2

So…how many red boxes for n inserts? 𝚯(log(n))

How much work for box j?

How much work for n inserts?

Total for n insertions: 𝚯(n)

Amortized Runtime

append(elem) is O(n)

n calls to append(elem) are O(n)

Amortized Runtime

append(elem) is O(n)

n calls to append(elem) are O(n)

The cost of n calls is guaranteed to be O(n).

Amortized Runtime

If n calls to a function take O(T(n))...

We say the Amortized Runtime is O(T(n) / n)

The amortized runtime of append on an ArrayBuffer is: O(n/n) = O(1)
The unqualified runtime of append on an ArrayBuffer is: O(n)

