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Announcements

● WA1 is Due Wednesday @ 11:59pm



Recap

● Recursion: A big problem made up of one or more instances of a 
smaller problem
○ Factorial: f(n) = n * f(n-1)
○ Fibonacci: f(n) = f(n-1) + f(n-2)
○ Towers of Hanoi: move(n) = move(n-1), move(1), then move(n-1) again

● Inductive Proofs:
○ Come up with a hypothesis
○ Prove it on the base case
○ Assume it works for n' < n; Prove for n based on that assumption



Inductive Proof for Towers of Hanoi

● Base case is one ring. I can move one ring. 
● Assume I can move n-1 rings; Can I prove that I can move n? Yes

○ Move n - 1 (which we can do based on our assumption)
○ Move 1 ring
○ Move n - 1 (which we can do based on our assumption.
○ Therefore, if we can move n - 1, we can move n.

* Note this is just a proof that we can solve it for any value of n. The actual number of steps required can also 
be shown by induction and will be covered in recitation



Fibonacci 

What is the complexity of fib(n)?

def fib(n: Int): Long =
    if(n < 2){ 1 }
    else { fibb(n-1) + fibb(n-2) }



Fibonacci

Solve for T(n)...How?
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Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks
3. You can move n-2 blocks if you know how to move n-3 blocks
4. You can move n-3 blocks if you know how to move n-4 blocks

…

You can always move 1 block
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Divide and Conquer

To solve the problem at n:

Divide the problem into smaller problems (size n-1 and 1 in this case)

Conquer the smaller problems

Combine the smaller solutions to get the bigger solution



Merge Sort

Input: An array with elements in an unknown order.

Output: An array with elements in sorted order.
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Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it? It's already sorted!!!

Combine (combine the sorted arrays into a bigger sorted array)
How can I do this, and how long does it take? Merge…
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How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

What was the complexity?

Each comparison was 𝚯(1)...

How many comparisons? 𝚯(|red| + |blue|)



Merge Code

def merge[A: Ordering](left: Seq[A], right: Seq[A]): Seq[A] = {
    val output = ArrayBuffer[A]()
  
    val leftItems = left.iterator.buffered
    val rightItems = right.iterator.buffered
  
    while(leftItems.hasNext || rightItems.hasNext) {
      if(!left.hasNext)          { output.append(right.next) }
      else if(!right.hasNext)    { output.append(left.next) }
      else if(Ordering[A].lt( left.head, right.head ))
                                 { output.append(left.next) }
      else                       { output.append(right.next) }
    }
    output.toSeq
  }
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Divide

● We know how to combine sorted arrays
● We know that in a base case of n = 1 how to sort
● How do we divide our problem to get there?

Let's divide our array in half (recursively)!
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Visualization - Divide

Divide the input in half



Visualization - Divide

Divide each half in half



Visualization - Divide

Divide each half in 
half again…



Visualization - Conquer

Divide each half in 
half again…

We can't divide in half anymore (base case)



Visualization - Combine



Visualization - Combine

Each single item list is 
sorted…merge each 

pair into a bigger 
sorted list



Visualization - Combine

Merge each pair of 2 
into sorted lists of 

size 4



Visualization - Combine

One more merge gets our 
original list fully sorted



Sort Code

def sort[A: Ordering](data: Seq[A]): Seq[A] = 
    {
      if(data.length <= 1) { return data }
      else {
        val (left, right) = data.splitAt(data.length / 2)
        return merge(
          sort(left),
          sort(right)
        )
      }
    }



Complexity

If we solve a problem of size n by:

● Dividing it into a sub-problems
○ Where each problem is of size n/b (usually b = a)
○ …and stop recurring at n ≤ c
○ …and the cost of dividing is D(n)
○ …and the cost of combining is C(n)

Then our total cost will be…



Complexity

a subproblems of size n/b, base case of n ≤ c
divide cost of D(n)

and combine cost of C(n)



For Merge Sort

Divide: Split the sequence in half
D(n) = 𝚯(n) (can we do it faster?)

Conquer: Sort left and right halves
a = 2, b = 2, c = 1

Combine: Merge halves together
C(n) = 𝚯(n)
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For Merge Sort

How do we find a closed-form hypothesis?
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Merge Sort Runtime: Inductive Proof

Now we can use induction to prove that there is a c, n0 s.t. T(n) ≤ c nlog(n) 
for any n > n0



Merge Sort Runtime: Inductive Proof

Base Case: T(1) ≤ c

c0 ≤ c

True for any c > c0 
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Merge Sort Runtime: Inductive Proof

Which is true for any

and



Next Time…

Quick Sort

Average Runtime


