CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Divide and Conquer Textbook Ch 15

Announcements

• WA1 is Due Wednesday @ 11:59pm

Recap

- **Recursion:** A big problem made up of one or more instances of a smaller problem
 - Factorial: f(n) = n * f(n-1)
 - Fibonacci: f(n) = f(n-1) + f(n-2)
 - Towers of Hanoi: move(n) = move(n-1), move(1), then move(n-1) again

Inductive Proofs:

- Come up with a hypothesis
- Prove it on the base case
- Assume it works for n' < n; Prove for n based on that assumption

Inductive Proof for Towers of Hanoi

- Base case is one ring. I can move one ring.
- Assume I can move n-1 rings; Can I prove that I can move n? Yes
 - Move n 1 (which we can do based on our assumption)
 - Move 1 ring
 - Move n 1 (which we can do based on our assumption.
 - Therefore, if we can move n 1, we can move n.

* Note this is just a proof that we can solve it for any value of n. The actual number of steps required can also be shown by induction and will be covered in recitation

Fibonacci

What is the complexity of fib(n)?

```
def fib(n: Int): Long =
if(n < 2) { 1 }
else { fibb(n-1) + fibb(n-2) }</pre>
```

Fibonacci

$$T(n) = \begin{cases} \Theta(1) & \text{if } n < 2\\ T(n-1) + T(n-2) + \Theta(1) & \text{otherwise} \end{cases}$$

Solve for *T*(*n*)...How?

Remember the Towers of Hanoi...

1. You can move *n* blocks if you know how to move *n*-1 blocks

- 1. You can move *n* blocks if you know how to move *n*-1 blocks
- 2. You can move *n*-1 blocks if you know how to move *n*-2 blocks

- 1. You can move *n* blocks if you know how to move *n*-1 blocks
- 2. You can move *n*-1 blocks if you know how to move *n*-2 blocks
- 3. You can move *n*-2 blocks if you know how to move *n*-3 blocks

- 1. You can move *n* blocks if you know how to move *n*-1 blocks
- 2. You can move *n*-1 blocks if you know how to move *n*-2 blocks
- 3. You can move *n*-2 blocks if you know how to move *n*-3 blocks
- 4. You can move *n*-3 blocks if you know how to move *n*-4 blocks

Remember the Towers of Hanoi...

- 1. You can move *n* blocks if you know how to move *n*-1 blocks
- 2. You can move *n*-1 blocks if you know how to move *n*-2 blocks
- 3. You can move *n*-2 blocks if you know how to move *n*-3 blocks
- 4. You can move *n*-3 blocks if you know how to move *n*-4 blocks

You can always move 1 block

...

To solve the problem at *n*:

To solve the problem at *n*:

Divide the problem into smaller problems (size *n*-1 and 1 in this case)

To solve the problem at *n*:

Divide the problem into smaller problems (size *n*-1 and 1 in this case)

Conquer the smaller problems

To solve the problem at *n*:

Divide the problem into smaller problems (size *n*-1 and 1 in this case)

Conquer the smaller problems

Combine the smaller solutions to get the bigger solution

Input: An array with elements in an unknown order.

Output: An array with elements in sorted order.

Divide (break the array into smaller arrays) What's the smallest list I could try to sort?

Divide (break the array into smaller arrays) What's the smallest list I could try to sort? size n = 1

Divide (break the array into smaller arrays) What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays) How do I sort it?

Divide (break the array into smaller arrays) What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays) How do I sort it? It's already sorted!!!

Divide (break the array into smaller arrays) What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays) How do I sort it? It's already sorted!!!

Combine (combine the sorted arrays into a bigger sorted array) How can I do this, and how long does it take?

Divide (break the array into smaller arrays) What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays) How do I sort it? It's already sorted!!!

Combine (combine the sorted arrays into a bigger sorted array) How can I do this, and how long does it take? Merge...

What was the complexity?

What was the complexity?

Each comparison was $\Theta(1)$...

How do we Merge Two Sorted Arrays?

What was the complexity?

Each comparison was $\Theta(1)$...

How many comparisons? $\Theta(|red| + |blue|)$

Merge Code

def merge[A: Ordering](left: Seq[A], right: Seq[A]): Seq[A] = {
 val output = ArrayBuffer[A]()

```
val leftItems = left.iterator.buffered
val rightItems = right.iterator.buffered
```

```
while(leftItems.hasNext || rightItems.hasNext) {
    if(!left.hasNext) { output.append(right.next) }
    else if(!right.hasNext) { output.append(left.next) }
    else if(Ordering[A].lt(left.head, right.head))
        { output.append(left.next) }
    else { output.append(right.next) }
```

```
output.toSeq
```

Divide

- We know how to combine sorted arrays
- We know that in a base case of n = 1 how to sort
- How do we divide our problem to get there?

Divide

- We know how to combine sorted arrays
- We know that in a base case of n = 1 how to sort
- How do we divide our problem to get there?

Let's divide our array in half (recursively)!

Visualization - Conquer

Sort Code

```
def sort[A: Ordering](data: Seq[A]): Seq[A] =
      if(data.length <= 1) { return data }</pre>
      else {
        val (left, right) = data.splitAt(data.length / 2)
        return merge(
          sort(left),
          sort(right)
```

Complexity

If we solve a problem of size *n* by:

- Dividing it into a sub-problems
 - Where each problem is of size *n*/*b* (usually *b* = *a*)
 - ...and stop recurring at $n \le c$
 - ...and the cost of dividing is D(n)
 - ...and the cost of combining is C(n)

Then our total cost will be...

Complexity

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq c \\ a \cdot T(\frac{n}{b}) + D(n) + C(n) & \text{otherwise} \end{cases}$$

a subproblems of size n/b, base case of $n \le c$ divide cost of D(n)and combine cost of C(n)

For Merge Sort

Divide: Split the sequence in half $D(n) = \Theta(n)$ (can we do it faster?)

Conquer: Sort left and right halves a = 2, b = 2, c = 1

Combine: Merge halves together $C(n) = \Theta(n)$

For Merge Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(1) + \Theta(n) & \text{otherwise} \end{cases}$$

For Merge Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(1) + \Theta(n) & \text{otherwise} \end{cases}$$

How do we find a closed-form hypothesis?

Each node shows D(n) + C(n)

Each node shows D(n) + C(n)

$$\sum_{i=0}^{\log(n)} \sum_{j=1}^{2^i} \Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} \sum_{j=1}^{2^i} \Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} \sum_{j=1}^{2^i} \Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} \sum_{j=1}^{2^i} \Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} \sum_{j=1}^{2^i} \Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} (2^i + 1 - 1)\Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} \sum_{j=1}^{2^i} \Theta(\frac{n}{2^i})$$
$$\sum_{i=0}^{\log(n)} (2^i + 1 - 1)\Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} 2^i \Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} 2^i \Theta(\frac{n}{2^i})$$

$$\sum_{i=0}^{\log(n)} 2^{i} \Theta(\frac{n}{2^{i}})$$
$$\sum_{i=0}^{\log(n)} \Theta(n)$$

$$\sum_{i=0}^{\log(n)} 2^i \Theta(\frac{n}{2^i})$$
$$\sum_{i=0}^{\log(n)} \Theta(n)$$
$$(\log(n) - 0 + 1)\Theta(n)$$

$$\sum_{i=0}^{\log(n)} 2^{i} \Theta(\frac{n}{2^{i}})$$
$$\sum_{i=0}^{\log(n)} \Theta(n)$$
$$\log(n) - 0 + 1)\Theta(n)$$
$$\Theta(n\log(n)) + \Theta(n)$$

$$\sum_{i=0}^{\log(n)} 2^{i} \Theta(\frac{n}{2^{i}})$$
$$\sum_{i=0}^{\log(n)} \Theta(n)$$
$$\log(n) - 0 + 1)\Theta(n)$$
$$\Theta(n\log(n)) + \Theta(n)$$
$$\Theta(n\log(n))$$

Merge Sort Runtime: Inductive Proof

Now we can use induction to prove that there is a c, n_0 s.t. $T(n) \le c n \log(n)$ for any $n > n_0$

$$T(n) = \begin{cases} c_0 & \text{if } n \le 1\\ 2 \cdot T(\frac{n}{2}) + c_1 + c_2 \cdot n & \text{otherwise} \end{cases}$$
Base Case: $T(1) \le c$

 $C_0 \leq C$

True for any $c > c_0$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$ $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$ $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$

By the assumption, and transitivity, we just need to show: $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$ $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$

By the assumption, and transitivity, we just need to show: $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$

 $cn\log(n) - cn\log(2) + c_1 + c_2n \le cn\log(n)$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$ $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$

By the assumption, and transitivity, we just need to show: $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$

 $cn \log(n) - cn \log(2) + c_1 + c_2n \le cn \log(n)$ $c_1 + c_2n \le cn \log(2)$

 $c_1 + c_2 n \le cn \log(2)$

 $c_1 + c_2 n \le cn \log(2)$

$$\frac{c_1}{n\log(2)} + \frac{c_2}{\log(2)} \le c$$

 $c_1 + c_2 n \le cn \log(2)$

$$\frac{c_1}{n\log(2)} + \frac{c_2}{\log(2)} \le c$$

Which is true for any

$$n_0 \ge \frac{c_1}{\log(2)}$$
 and $c > \frac{c_2}{\log(2)} + 1$

Next Time...

Quick Sort

Average Runtime