
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Divide and Conquer
Textbook Ch 15

mailto:epmikida@buffalo.edu

Announcements

● WA1 is Due Wednesday @ 11:59pm

Recap

● Recursion: A big problem made up of one or more instances of a
smaller problem
○ Factorial: f(n) = n * f(n-1)
○ Fibonacci: f(n) = f(n-1) + f(n-2)
○ Towers of Hanoi: move(n) = move(n-1), move(1), then move(n-1) again

● Inductive Proofs:
○ Come up with a hypothesis
○ Prove it on the base case
○ Assume it works for n' < n; Prove for n based on that assumption

Inductive Proof for Towers of Hanoi

● Base case is one ring. I can move one ring.
● Assume I can move n-1 rings; Can I prove that I can move n? Yes

○ Move n - 1 (which we can do based on our assumption)
○ Move 1 ring
○ Move n - 1 (which we can do based on our assumption.
○ Therefore, if we can move n - 1, we can move n.

* Note this is just a proof that we can solve it for any value of n. The actual number of steps required can also
be shown by induction and will be covered in recitation

Fibonacci

What is the complexity of fib(n)?

def fib(n: Int): Long =
 if(n < 2){ 1 }
 else { fibb(n-1) + fibb(n-2) }

Fibonacci

Solve for T(n)...How?

Divide and Conquer

Remember the Towers of Hanoi…

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks
3. You can move n-2 blocks if you know how to move n-3 blocks

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks
3. You can move n-2 blocks if you know how to move n-3 blocks
4. You can move n-3 blocks if you know how to move n-4 blocks

Divide and Conquer

Remember the Towers of Hanoi…

1. You can move n blocks if you know how to move n-1 blocks
2. You can move n-1 blocks if you know how to move n-2 blocks
3. You can move n-2 blocks if you know how to move n-3 blocks
4. You can move n-3 blocks if you know how to move n-4 blocks

…

You can always move 1 block

Divide and Conquer

To solve the problem at n:

Divide and Conquer

To solve the problem at n:

Divide the problem into smaller problems (size n-1 and 1 in this case)

Divide and Conquer

To solve the problem at n:

Divide the problem into smaller problems (size n-1 and 1 in this case)

Conquer the smaller problems

Divide and Conquer

To solve the problem at n:

Divide the problem into smaller problems (size n-1 and 1 in this case)

Conquer the smaller problems

Combine the smaller solutions to get the bigger solution

Merge Sort

Input: An array with elements in an unknown order.

Output: An array with elements in sorted order.

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort?

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it?

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it? It's already sorted!!!

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it? It's already sorted!!!

Combine (combine the sorted arrays into a bigger sorted array)
How can I do this, and how long does it take?

Merge Sort - Questions

Divide (break the array into smaller arrays)
What's the smallest list I could try to sort? size n = 1

Conquer (sort the smaller arrays)
How do I sort it? It's already sorted!!!

Combine (combine the sorted arrays into a bigger sorted array)
How can I do this, and how long does it take? Merge…

How do we Merge Two Sorted Arrays?

15 31 55 61 88

24 37 62 73 95

How do we Merge Two Sorted Arrays?

31 55 61 88

24 37 62 73 95

15

How do we Merge Two Sorted Arrays?

31 55 61 88

37 62 73 95

2415

How do we Merge Two Sorted Arrays?

55 61 88

37 62 73 95

2415 31

How do we Merge Two Sorted Arrays?

55 61 88

62 73 95

24 3715 31

How do we Merge Two Sorted Arrays?

88

62 73 95

24 3715 31 55

61

How do we Merge Two Sorted Arrays?

88

73 95

24 37 6115 31 55

62

How do we Merge Two Sorted Arrays?

88

73 95

24 37 6115 31 55 62

How do we Merge Two Sorted Arrays?

88

95

24 37 6115 31 55 62 73

How do we Merge Two Sorted Arrays?

95

24 37 61 8815 31 55 62 73

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

What was the complexity?

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

What was the complexity?

Each comparison was 𝚯(1)...

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

What was the complexity?

Each comparison was 𝚯(1)...

How many comparisons? 𝚯(|red| + |blue|)

Merge Code

def merge[A: Ordering](left: Seq[A], right: Seq[A]): Seq[A] = {
 val output = ArrayBuffer[A]()

 val leftItems = left.iterator.buffered
 val rightItems = right.iterator.buffered

 while(leftItems.hasNext || rightItems.hasNext) {
 if(!left.hasNext) { output.append(right.next) }
 else if(!right.hasNext) { output.append(left.next) }
 else if(Ordering[A].lt(left.head, right.head))
 { output.append(left.next) }
 else { output.append(right.next) }
 }
 output.toSeq
 }

Divide

● We know how to combine sorted arrays
● We know that in a base case of n = 1 how to sort
● How do we divide our problem to get there?

Divide

● We know how to combine sorted arrays
● We know that in a base case of n = 1 how to sort
● How do we divide our problem to get there?

Let's divide our array in half (recursively)!

Visualization - Divide

Visualization - Divide

Divide the input in half

Visualization - Divide

Divide each half in half

Visualization - Divide

Divide each half in
half again…

Visualization - Conquer

Divide each half in
half again…

We can't divide in half anymore (base case)

Visualization - Combine

Visualization - Combine

Each single item list is
sorted…merge each

pair into a bigger
sorted list

Visualization - Combine

Merge each pair of 2
into sorted lists of

size 4

Visualization - Combine

One more merge gets our
original list fully sorted

Sort Code

def sort[A: Ordering](data: Seq[A]): Seq[A] =
 {
 if(data.length <= 1) { return data }
 else {
 val (left, right) = data.splitAt(data.length / 2)
 return merge(
 sort(left),
 sort(right)
)
 }
 }

Complexity

If we solve a problem of size n by:

● Dividing it into a sub-problems
○ Where each problem is of size n/b (usually b = a)
○ …and stop recurring at n ≤ c
○ …and the cost of dividing is D(n)
○ …and the cost of combining is C(n)

Then our total cost will be…

Complexity

a subproblems of size n/b, base case of n ≤ c
divide cost of D(n)

and combine cost of C(n)

For Merge Sort

Divide: Split the sequence in half
D(n) = 𝚯(n) (can we do it faster?)

Conquer: Sort left and right halves
a = 2, b = 2, c = 1

Combine: Merge halves together
C(n) = 𝚯(n)

For Merge Sort

For Merge Sort

How do we find a closed-form hypothesis?

For Merge Sort: Recursion Trees

𝚯(n)

𝚯(n/2)𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

…

For Merge Sort: Recursion Trees

𝚯(n)

𝚯(n/2)𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each node shows D(n) + C(n)

…

For Merge Sort: Recursion Trees

𝚯(n)

𝚯(n/2)𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each node shows D(n) + C(n)

log(n)
height

…

For Merge Sort: Recursion Trees

𝚯(n)

𝚯(n/2)𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

log(n)
height

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

For Merge Sort: Recursion Trees

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

For Merge Sort: Recursion Trees

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

For Merge Sort: Recursion Trees

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

For Merge Sort: Recursion Trees

At level i there are 2i tasks, each with runtime 𝚯(n/2i),
and there are log(n) levels.

Merge Sort Runtime

Merge Sort Runtime

Merge Sort Runtime

Merge Sort Runtime

Merge Sort Runtime

Merge Sort Runtime

Merge Sort Runtime

Merge Sort Runtime

Merge Sort Runtime: Inductive Proof

Now we can use induction to prove that there is a c, n0 s.t. T(n) ≤ c nlog(n)
for any n > n0

Merge Sort Runtime: Inductive Proof

Base Case: T(1) ≤ c

c0 ≤ c

True for any c > c0

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

Merge Sort Runtime: Inductive Proof

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

Merge Sort Runtime: Inductive Proof

Merge Sort Runtime: Inductive Proof

Merge Sort Runtime: Inductive Proof

Which is true for any

and

Next Time…

Quick Sort

Average Runtime

