
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

QuickSort and Average Runtime
Textbook Ch. 15

mailto:epmikida@buffalo.edu

Announcements

● WA1 due Wednesday at 11:59PM
● My office hours for today are cancelled, will hold them tomorrow

instead

Recap - Merge Sort

Divide: Split the sequence in half
D(n) = 𝚯(n) (can do in 𝚯(1))

Conquer: Sort the left and right halves
a = 2, b = 2, c = 1

Combine: Merge halves together
C(n) = 𝚯(n)

Merge Sort: Intuition

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Merge Sort: Intuition

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Merge Sort: Intuition

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

Merge Sort: Intuition

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

Notice the total cost of
each level is always 𝚯(n)

Merge Sort: Intuition

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

Notice the total cost of
each level is always 𝚯(n)

Because we divide
in half at each
level, we have

log(n) levels

log(n)

Merge Sort: Intuition

𝚯(n)

𝚯(n/2) 𝚯(n/2)

𝚯(n/4) 𝚯(n/4) 𝚯(n/4) 𝚯(n/4)

Each time we move down a level,
we split the sequence in half

Each node is labeled with the total
cost to dividing the sequence in
half, and combining the sorted
lists after they are sorted by the
lower levels

Notice the total cost of
each level is always 𝚯(n)

Because we divide
in half at each
level, we have

log(n) levels

log(n)

Hypothesis: The cost of merge sort is n log(n)

Merge Sort: Proof by Induction

Base Case: T(1) ≤ c

c0 ≤ c

True for any c > c0

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

Merge Sort: Proof by Induction

Assume: T(n/2) ≤ c (n/2) log(n/2)
Show: T(n) ≤ cn log(n)

By the assumption, and transitivity, we just need to show:

Merge Sort: Proof by Induction

Merge Sort: Proof by Induction

Merge Sort: Proof by Induction

Which is true for any

and

Where is all of the "work" being done?

The combine step

Can we put the work in the divide step instead?

Merge Sort

Where is all of the "work" being done?

The combine step

Can we put the work in the divide step instead?

Merge Sort

Where is all of the "work" being done?

The combine step

Can we put the work in the divide step instead?

Merge Sort

QuickSort

Idea: What if we divide our sequence around a particular value?

What value would we like to choose? Median

QuickSort

Idea: What if we divide our sequence around a particular value?

What value would we like to choose? Median

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

1 2 4 3 5 7 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

1 2 4 3 5 7 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

1 2 4 3 5 7 6 8

1 2 3 4 5 7 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

1 2 4 3 5 7 6 8

1 2 3 4 5 7 6 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

1 2 4 3 5 7 6 8

1 2 3 4 5 7 6 8

1 2 3 4 5 6 7 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

1 2 4 3 5 7 6 8

1 2 3 4 5 7 6 8

1 2 3 4 5 6 7 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

1 2 4 3 5 7 6 8

1 2 3 4 5 7 6 8

1 2 3 4 5 6 7 8

QuickSort: Idealized Version

7 1 4 3 5 2 6 8

2 1 4 3 5 7 6 8

1 2 4 3 5 7 6 8

1 2 3 4 5 7 6 8

1 2 3 4 5 6 7 8

QuickSort: Idealized Algorithm

To sort an array of size n:

1. Pick a pivot value (median?)
2. Swap values until:

a. elements at [1, n/2) are ≤ pivot
b. elements at [n/2, n) are > pivot

3. Recursively sort the lower half
4. Recursively sort the upper half

QuickSort: Idealized Version

def idealizedQuickSort(arr: Array[Int], from: Int, until: Int): Unit = {
 if(until - from < 1) { return }
 val pivot = ???
 var low = from, high = until -1

 while(low < high) {
 while(arr(low) <= pivot && low < high){ low ++ }
 if(low < high) {
 while(arr(high) > pivot && low < high){ high -- }
 swap(arr, low, high)
 }
 }
 idealizedQuickSort(arr, from = 0, until = low)
 idealizedQuickSort(arr, from = low, until = until)
}

Great! So…how do we find
the median…?

Great! So…how do we find
the median…?

Finding the median takes
O(n log(n)) for an unsorted array :(

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in O(1).
Now what is our complexity?

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in O(1).
Now what is our complexity?

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in O(1).
Now what is our complexity?

Compare to Merge Sort:

QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)?

Idea: Pick it randomly! On average, half the values will be lower.

QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)?

Idea: Pick it randomly! On average, half the values will be lower.

QuickSort: Attempt #2

To sort an array of size n:

1. Pick a value at random as the pivot
2. Swap values until the array is subdivided into:

a. low: array elements < pivot
b. pivot
c. high: array elements > pivot

3. Recursively sort low
4. Recursively sort high

QuickSort: Runtime

What is the worst-case runtime?

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8

[5,4,3,2,1],6,[],7,8

QuickSort: Worst-Case Scenario

What if we always pick the worst pivot?

[8,7,6,5,4,3,2,1]

[7,6,5,4,3,2,1],8,[]

[6,5,4,3,2,1],7,[],8

[5,4,3,2,1],6,[],7,8

...

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

Remember: This is called the unqualified runtime…we don't take any extra
context into account

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?

QuickSort

Let's say we pick Xth largest element for our pivot.

What is the runtime (T(n))?

QuickSort

Let's say we pick Xth largest element for our pivot.

What is the runtime (T(n))?

Probabilities

How likely are we to pick X = k for any specific k?

P[X = k] = 1/n

Probabilities

How likely are we to pick X = k for any specific k?

P[X = k] = 1/n

Probability Theory (Great Class…)

If I roll a d6 (6-sided die) k times,

what is the average roll over all possible outcomes?

k = 1

If I rolled a d6 1 time…

Roll Probability Outcome

⚀ 1/6 1

⚁ 1/6 2

⚂ 1/6 3

⚃ 1/6 4

⚄ 1/6 5

⚅ 1/6 6

Expected Value

The Expected Value of a random variable (ie the number rolled on the d6)
is the sum of all outcomes times the probability of that outcome

Expected Value

The Expected Value of a random variable (ie the number rolled on the d6)
is the sum of all outcomes times the probability of that outcome

Expected Value

The Expected Value of a random variable (ie the number rolled on the d6)
is the sum of all outcomes times the probability of that outcome

We refer to the expected value of a random variable as E[X]

Independent Events

If we roll a d6 twice, does one roll affect the other?

Independent Events

If we roll a d6 twice, does one roll affect the other?

No. They are independent events.

Independent Events

If we roll a d6 twice, does one roll affect the other?

No. They are independent events.

If X and Y are independent then:

E[X+Y] = E[X] + E[Y]

Independent Events

If we roll a d6 twice, does one roll affect the other?

No. They are independent events.

If X and Y are independent then:

E[X+Y] = E[X] + E[Y]

If X and Y are our dice rolls, then E[X+Y] = E[X] + E[Y] = 3.5 + 3.5 = 7

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

QuickSort Runtime

…and convert it to the expected runtime over the variable X

QuickSort Runtime

…and convert it to the expected runtime over the variable X

QuickSort Runtime

…and convert it to the expected runtime over the variable X

This looks like the runtime of MergeSort, so now our hypothesis is that our
Expected Runtime is n log(n)

Back to Induction

Hypothesis: E[T(n)] ∈ O(n log(n))

Base Case

Base Case: E[T(1)] ≤ c (1 log(1))

Base Case

Base Case: E[T(1)] ≤ c (1 log(1))

E[T(1)] ≤ c (1 · 0)

Base Case

Base Case: E[T(1)] ≤ c (1 log(1))

E[T(1)] ≤ c (1 · 0)

E[T(1)] ≰ 0

Base Case (Take 2)

Base Case (Take Two): E[T(2)] ≤ c (2 log(2))

Base Case (Take 2)

Base Case (Take Two): E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

Base Case (Take 2)

Base Case (Take Two): E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

Base Case (Take 2)

Base Case (Take Two): E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

Base Case (Take 2)

Base Case (Take Two): E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

2c0 + 2c1 ≤ 2c

Base Case (Take 2)

Base Case (Take Two): E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

2c0 + 2c1 ≤ 2c

True for any c ≥ c0 + c1

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Inductive Case

Inductive Case

Inductive Case

Inductive Case

Inductive Case

Inductive Case

QuickSort

So…is QuickSort O(n log(n))...?

No!

What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average Bound
…we don't have any guarantees

What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average Bound
…we don't have any guarantees

← Unqualified runtime

