## CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

### QuickSort and Average Runtime Textbook Ch. 15

## Announcements

- WA1 due Wednesday at 11:59PM
- My office hours for today are cancelled, will hold them tomorrow instead

# Recap - Merge Sort

**Divide:** Split the sequence in half  $D(n) = \Theta(n)$  (can do in  $\Theta(1)$ )

**Conquer:** Sort the left and right halves a = 2, b = 2, c = 1

**Combine:** Merge halves together  $C(n) = \Theta(n)$ 









Notice the total cost of each level is always  $\Theta(n)$ 



Notice the total cost of each level is always  $\Theta(n)$ 



Notice the total cost of each level is always  $\Theta(n)$ 

**Hypothesis:** The cost of merge sort is *n* log(*n*)

**Base Case:**  $T(1) \le c$ 

 $C_0 \leq C$ 

True for any  $c > c_0$ 

Assume:  $T(n/2) \le c (n/2) \log(n/2)$ Show:  $T(n) \le cn \log(n)$ 

Assume:  $T(n/2) \le c (n/2) \log(n/2)$ Show:  $T(n) \le cn \log(n)$  $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$ 

Assume:  $T(n/2) \le c (n/2) \log(n/2)$ Show:  $T(n) \le cn \log(n)$  $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$ 

By the assumption, and transitivity, we just need to show:  $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$ 

Assume:  $T(n/2) \le c (n/2) \log(n/2)$ Show:  $T(n) \le cn \log(n)$  $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$ 

By the assumption, and transitivity, we just need to show:  $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$ 

 $cn\log(n) - cn\log(2) + c_1 + c_2n \le cn\log(n)$ 

Assume:  $T(n/2) \le c (n/2) \log(n/2)$ Show:  $T(n) \le cn \log(n)$  $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$ 

By the assumption, and transitivity, we just need to show:  $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$ 

 $cn \log(n) - cn \log(2) + c_1 + c_2n \le cn \log(n)$  $c_1 + c_2n \le cn \log(2)$ 

 $c_1 + c_2 n \le cn \log(2)$ 

 $c_1 + c_2 n \le cn \log(2)$ 

$$\frac{c_1}{n\log(2)} + \frac{c_2}{\log(2)} \le c$$

 $c_1 + c_2 n \le cn \log(2)$ 

$$\frac{c_1}{n\log(2)} + \frac{c_2}{\log(2)} \le c$$

Which is true for any

$$n_0 \ge \frac{c_1}{\log(2)}$$
 and  $c > \frac{c_2}{\log(2)} + 1$ 



#### Where is all of the "work" being done?



#### Where is all of the "work" being done?

The combine step

# Merge Sort

#### Where is all of the "work" being done?

#### The combine step

#### Can we put the work in the divide step instead?



**Idea:** What if we divide our sequence around a particular value? What value would we like to choose?



### Idea: What if we divide our sequence around a particular value? What value would we like to choose? Median

#### 7 1 4 3 5 2 6 8

# 7 1 4 3 5 2 6 8























## **QuickSort: Idealized Algorithm**

To sort an array of size *n*:

- 1. Pick a *pivot* value (median?)
- 2. Swap values until:
  - a. elements at [1, n/2) are  $\leq$  pivot
  - b. elements at [n/2, n) are > pivot
- 3. Recursively sort the lower half
- 4. Recursively sort the upper half

#### **QuickSort: Idealized Version**

```
def idealizedQuickSort(arr: Array[Int], from: Int, until: Int): Unit = {
    if(until - from < 1) { return }
    val pivot = ???
    var low = from, high = until -1
    while(low < high) {
        while(arr(low) <= pivot && low < high){ low ++ }
        if(low < high) {
            while(arr(high) > pivot && low < high){ high -- }
            swap(arr, low, high)</pre>
```

```
idealizedQuickSort(arr, from = 0, until = low)
idealizedQuickSort(arr, from = low, until = until)
```

## Great! So...how do we find the median...?

# Great! So...how do we find the median...?

## Finding the median takes O(n log(n)) for an unsorted array :(

## **QuickSort: Hypothetical**

Imagine a world where we can obtain a pivot in O(1). Now what is our complexity?

## **QuickSort: Hypothetical**

Imagine a world where we can obtain a pivot in O(1). Now what is our complexity?

$$T_{quicksort}(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(n) + 0 & \text{otherwise} \end{cases}$$

## **QuickSort: Hypothetical**

Imagine a world where we can obtain a pivot in O(1). Now what is our complexity?

$$T_{quicksort}(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(n) + 0 & \text{otherwise} \end{cases}$$

Compare to Merge Sort:

$$T_{mergesort}(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(1) + \Theta(n) & \text{otherwise} \end{cases}$$

#### QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)?

#### QuickSort: Attempt #2

#### So how can we pick a pivot value (in O(1) time)?

Idea: Pick it randomly! On average, half the values will be lower.

## QuickSort: Attempt #2

To sort an array of size *n*:

- 1. Pick a value at random as the *pivot*
- 2. Swap values until the array is subdivided into:
  - a. low: array elements < pivot
  - b. pivot
  - c. *high:* array elements > pivot
- 3. Recursively sort low
- 4. Recursively sort *high*

#### QuickSort: Runtime

What is the worst-case runtime?

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1]

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1] [7,6,5,4,3,2,1],8,[]

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1] [7,6,5,4,3,2,1],8,[] [6,5,4,3,2,1],7,[],8

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1] [7,6,5,4,3,2,1],8,[] [6,5,4,3,2,1],7,[],8 [5,4,3,2,1],6,[],7,8

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1] [7,6,5,4,3,2,1],8,[] [6,5,4,3,2,1],7,[],8 [5,4,3,2,1],6,[],7,8

What is the worst-case runtime?

What is the worst-case runtime?

 $T_{quicksort}(n) \in O(n^2)$ 

What is the worst-case runtime?

$$T_{quicksort}(n) \in O(n^2)$$

Remember: This is called the unqualified runtime...we don't take any extra context into account

Is the worst case runtime representative?

Is the worst case runtime representative? **No!** (the actual runtime will almost always be faster)

Is the worst case runtime representative?

**No!** (the actual runtime will almost always be faster)

But what **can** we say about runtime?



Let's say we pick Xth largest element for our pivot. What is the runtime (T(n))?

#### QuickSort

Let's say we pick Xth largest element for our pivot. What is the runtime (T(n))?

$$\begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } X = 1 \\ T(1) + T(n-2) + \Theta(n) & \text{if } X = 2 \\ T(2) + T(n-3) + \Theta(n) & \text{if } X = 3 \\ \vdots \\ T(n-2) + T(1) + \Theta(n) & \text{if } X = n-1 \\ T(n-1) + T(0) + \Theta(n) & \text{if } X = n \end{cases}$$

#### **Probabilities**

#### How likely are we to pick X = k for any specific k?

#### **Probabilities**

#### How likely are we to pick X = k for any specific k? P[X = k] = 1/n

#### **Probability Theory (Great Class...)**

#### If I roll a d6 (6-sided die) k times,

#### what is the average roll over all possible outcomes?

#### **k** = 1

#### If I rolled a d6 1 time...

| Roll | Probability | Outcome |
|------|-------------|---------|
|      | 1/6         | 1       |
|      | 1/6         | 2       |
|      | 1/6         | 3       |
|      | 1/6         | 4       |
|      | 1/6         | 5       |
|      | 1/6         | 6       |

#### **Expected Value**

The **Expected Value** of a random variable (ie the number rolled on the d6) is the sum of all outcomes times the probability of that outcome

$$\sum_{i} Probability_i \cdot Contribution_i$$

#### **Expected Value**

 $\sim$ 

The **Expected Value** of a random variable (ie the number rolled on the d6) is the sum of all outcomes times the probability of that outcome

$$\sum_{i=1}^{6} \frac{1}{6}i = \frac{1}{6} \cdot 1\frac{1}{6} \cdot 2\frac{1}{6} \cdot 3\frac{1}{6} \cdot 4\frac{1}{6} \cdot 5\frac{1}{6} \cdot 6 = 3.5$$

#### **Expected Value**

The **Expected Value** of a random variable (ie the number rolled on the d6) is the sum of all outcomes times the probability of that outcome

$$\sum_{i=1}^{6} \frac{1}{6}i = \frac{1}{6} \cdot 1\frac{1}{6} \cdot 2\frac{1}{6} \cdot 3\frac{1}{6} \cdot 4\frac{1}{6} \cdot 5\frac{1}{6} \cdot 6 = 3.5$$

We refer to the expected value of a random variable as **E[X]** 

If we roll a d6 twice, does one roll affect the other?

If we roll a d6 twice, does one roll affect the other? **No.** They are independent events.

If we roll a d6 twice, does one roll affect the other? **No.** They are independent events.

If **X** and **Y** are independent then:

E[X+Y] = E[X] + E[Y]

If we roll a d6 twice, does one roll affect the other? **No.** They are independent events.

If **X** and **Y** are independent then:

E[X+Y] = E[X] + E[Y]

If X and Y are our dice rolls, then E[X+Y] = E[X] + E[Y] = 3.5 + 3.5 = 7

#### **QuickSort Runtime**

Now we can write our runtime function in terms of random variables:

 $T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1 \\ T(0) + T(n-1) + \Theta(n) & \text{if } n > 1 \land X = 1 \\ T(1) + T(n-2) + \Theta(n) & \text{if } n > 1 \land X = 2 \\ T(2) + T(n-3) + \Theta(n) & \text{if } n > 1 \land X = 3 \\ \vdots \\ T(n-2) + T(1) + \Theta(n) & \text{if } n > 1 \land X = n - 1 \\ T(n-1) + T(0) + \Theta(n) & \text{if } n > 1 \land X = n \end{cases}$ 

### QuickSort Runtime

...and convert it to the expected runtime over the variable **X** 

$$E[T(n)] = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ E[T(X-1) + T(n-X)] + \Theta(n) & \text{otherwise} \end{cases}$$

### QuickSort Runtime

...and convert it to the expected runtime over the variable **X** 

$$E[T(n)] = \begin{cases} \Theta(1) & \text{if } n \le 1\\ E[T(X-1)] + E[T(n-X)] + \Theta(n) & \text{otherwise} \end{cases}$$

### **QuickSort Runtime**

...and convert it to the expected runtime over the variable X

$$E[T(n)] = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ E[T(X-1)] + E[T(n-X)] + \Theta(n) & \text{otherwise} \end{cases}$$

This looks like the runtime of MergeSort, so now our hypothesis is that our **Expected Runtime** is **n log(n)** 

#### **Back to Induction**

**Hypothesis:**  $E[T(n)] \in O(n \log(n))$ 



#### **Base Case:** $E[T(1)] \le c (1 \log(1))$



**Base Case:**  $E[T(1)] \le c (1 \log(1))$  $E[T(1)] \le c (1 \cdot 0)$ 



Base Case:  $E[T(1)] \le c \ (1 \ \log(1))$  $E[T(1)] \le c \ (1 \ \cdot 0)$  $E[T(1)] \le 0$ 

**Base Case (Take Two):**  $E[T(2)] \le c (2 \log(2))$ 

**Base Case (Take Two):**  $E[T(2)] \le c \ (2 \log(2))$  $2 \cdot E_i[T(i-1)] + 2c_1 \le 2c$ 

Base Case (Take Two):  $E[T(2)] \le c \ (2 \log(2))$   $2 \cdot E_i[T(i-1)] + 2c_1 \le 2c$  $2 \cdot (T(0)/2 + T(1)/2) + 2c_1 \le 2c$ 

Base Case (Take Two):  $E[T(2)] \le c \ (2 \log(2))$   $2 \cdot E_i[T(i-1)] + 2c_1 \le 2c$   $2 \cdot (T(0)/2 + T(1)/2) + 2c_1 \le 2c$  $T(0) + T(1) + 2c_1 \le 2c$ 

Base Case (Take Two):  $E[T(2)] \le c \ (2 \log(2))$   $2 \cdot E_i[T(i-1)] + 2c_1 \le 2c$   $2 \cdot (T(0)/2 + T(1)/2) + 2c_1 \le 2c$   $T(0) + T(1) + 2c_1 \le 2c$  $2c_0 + 2c_1 \le 2c$ 

**Base Case (Take Two):**  $E[T(2)] \le c (2 \log(2))$  $2 \cdot E_i[T(i-1)] + 2C_1 \le 2C$  $2 \cdot (T(0)/2 + T(1)/2) + 2c_1 \le 2c$  $T(0) + T(1) + 2c_1 \le 2c$  $2c_0 + 2c_1 \le 2c$ True for any  $c \ge c_0 + c_1$ 

#### Assume: $E[T(n')] \le c (n' \log(n'))$ for all n' < nShow: $E[T(n)] \le c (n \log(n))$

Assume:  $E[T(n')] \le c (n' \log(n'))$  for all n' < nShow:  $E[T(n)] \le c (n \log(n))$ 

$$\frac{2}{n} \left( \sum_{i=0}^{n-1} E[T(i)] \right) + c_1 \le cn \log(n)$$

Assume:  $E[T(n')] \le c (n' \log(n'))$  for all n' < nShow:  $E[T(n)] \le c (n \log(n))$ 

$$\frac{2}{n} \left( \sum_{i=0}^{n-1} E[T(i)] \right) + c_1 \le cn \log(n)$$
$$\frac{2}{n} \left( \sum_{i=0}^{n-1} ci \log(i) \right) + c_1 \le cn \log(n)$$

**Assume:**  $E[T(n')] \le c (n' \log(n'))$  for all n' < n**Show:**  $E[T(n)] \le c (n \log(n))$  $\frac{2}{n} \left( \sum_{i=0}^{n-1} E[T(i)] \right) + c_1 \le cn \log(n)$  $\frac{2}{n} \left( \sum_{i=0}^{n-1} ci \log(i) \right) + c_1 \le cn \log(n)$  $2\left(\frac{n-1}{2}\right)$ 

$$c\frac{2}{n}\left(\sum_{i=0}^{n} i\log(n)\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1} i\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1} i\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1} i\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right) + c_1 \le cn\log(n)$$
$$c\frac{\log(n)}{n}\left(n^2 - n\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$

$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1} i\right) + c_1 \le cn\log(n)$$

$$c\frac{2\log(n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right) + c_1 \le cn\log(n)$$

$$c\frac{\log(n)}{n}\left(n^2 - n\right) + c_1 \le cn\log(n)$$

$$cn\log(n) - c\log(n) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1}i\log(n)\right) + c_{1} \leq cn\log(n)$$

$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1}i\right) + c_{1} \leq cn\log(n)$$

$$c\frac{2\log(n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right) + c_{1} \leq cn\log(n)$$

$$c\frac{\log(n)}{n}\left(n^{2}-n\right) + c_{1} \leq cn\log(n)$$

$$cn\log(n) - c\log(n) + c_{1} \leq cn\log(n)$$

$$c_{1} \leq c\log(n)$$

### QuickSort

#### So...is QuickSort O(n log(n))...?

No!

### What guarantees do you get?

#### If f(n) is a Tight Bound

The algorithm always runs in *cf*(*n*) steps

#### If f(n) is a Worst-Case Bound

The algorithm always runs in at most cf(n)

# If f(n) is an Amortized Worst-Case Bound n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average Bound ...we don't have any guarantees

## What guarantees do you get?

#### If f(n) is a Tight Bound

The algorithm always runs in *cf*(*n*) steps

#### If f(n) is a Worst-Case Bound

The algorithm always runs in at most cf(n)

#### ← Unqualified runtime

#### If f(n) is an Amortized Worst-Case Bound n invocations of the algorithm **always** run in cnf(n) steps

#### If f(n) is an Average Bound

...we don't have any guarantees