CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

QuickSort and Average Runtime Textbook Ch. 15

Announcements

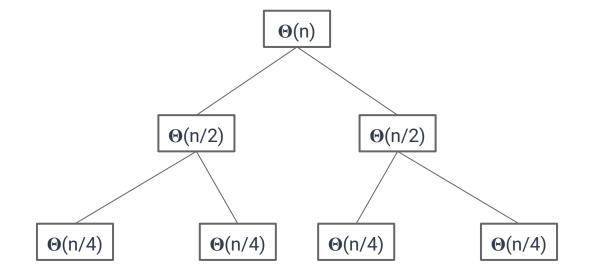
- WA1 due Wednesday at 11:59PM
- My office hours for today are cancelled, will hold them tomorrow instead

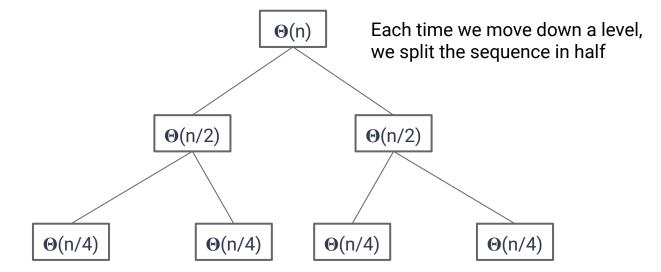
Recap - Merge Sort

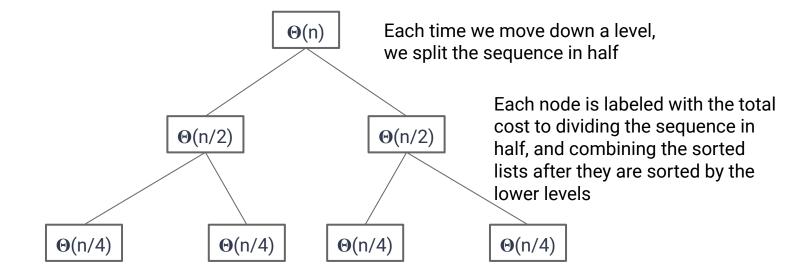
Divide: Split the sequence in half $D(n) = \Theta(n)$ (can do in $\Theta(1)$)

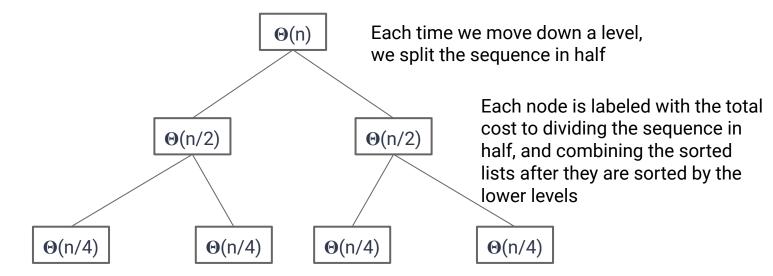
Conquer: Sort the left and right halves a = 2, b = 2, c = 1

Combine: Merge halves together $C(n) = \Theta(n)$

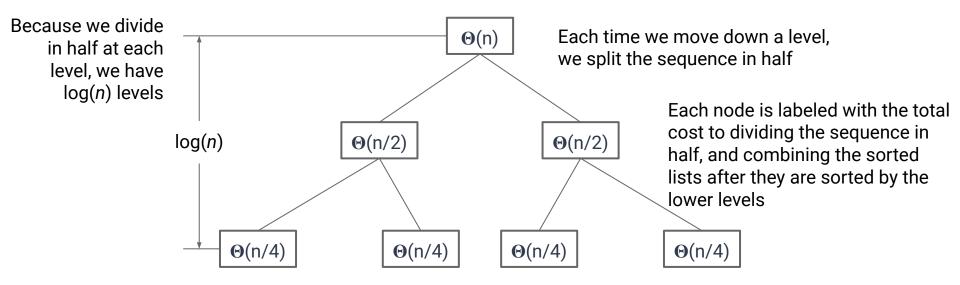




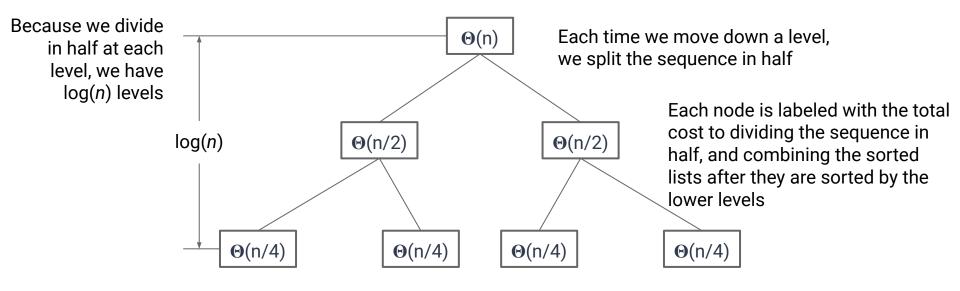




Notice the total cost of each level is always $\Theta(n)$



Notice the total cost of each level is always $\Theta(n)$



Notice the total cost of each level is always $\Theta(n)$

Hypothesis: The cost of merge sort is *n* log(*n*)

Base Case: $T(1) \le c$

 $C_0 \leq C$

True for any $c > c_0$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$ $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$ $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$

By the assumption, and transitivity, we just need to show: $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$ $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$

By the assumption, and transitivity, we just need to show: $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$

 $cn\log(n) - cn\log(2) + c_1 + c_2n \le cn\log(n)$

Assume: $T(n/2) \le c (n/2) \log(n/2)$ Show: $T(n) \le cn \log(n)$ $2 \cdot T(\frac{n}{2}) + c_1 + c_2n \le cn \log(n)$

By the assumption, and transitivity, we just need to show: $2c\frac{n}{2}\log\left(\frac{n}{2}\right) + c_1 + c_2n \le cn\log(n)$

 $cn \log(n) - cn \log(2) + c_1 + c_2n \le cn \log(n)$ $c_1 + c_2n \le cn \log(2)$

 $c_1 + c_2 n \le cn \log(2)$

 $c_1 + c_2 n \le cn \log(2)$

$$\frac{c_1}{n\log(2)} + \frac{c_2}{\log(2)} \le c$$

 $c_1 + c_2 n \le cn \log(2)$

$$\frac{c_1}{n\log(2)} + \frac{c_2}{\log(2)} \le c$$

Which is true for any

$$n_0 \ge \frac{c_1}{\log(2)}$$
 and $c > \frac{c_2}{\log(2)} + 1$

Where is all of the "work" being done?

Where is all of the "work" being done?

The combine step

Merge Sort

Where is all of the "work" being done?

The combine step

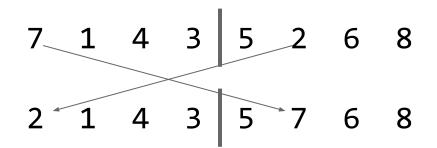
Can we put the work in the divide step instead?

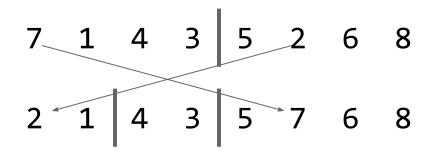
Idea: What if we divide our sequence around a particular value? What value would we like to choose?

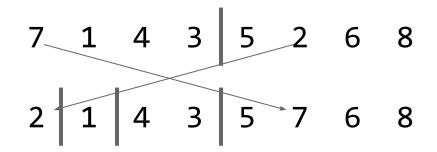
Idea: What if we divide our sequence around a particular value? What value would we like to choose? Median

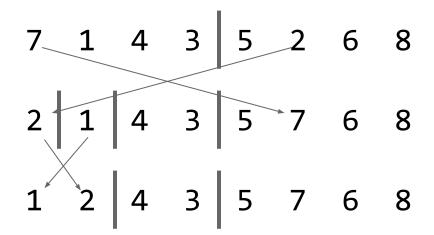
7 1 4 3 5 2 6 8

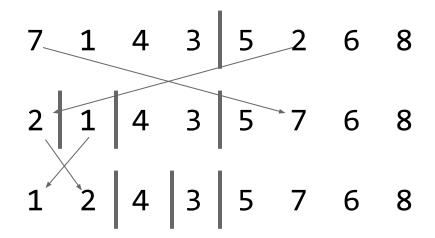
7 1 4 3 5 2 6 8

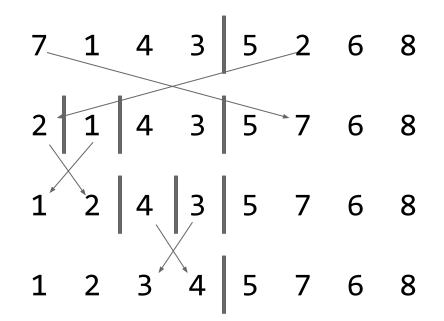


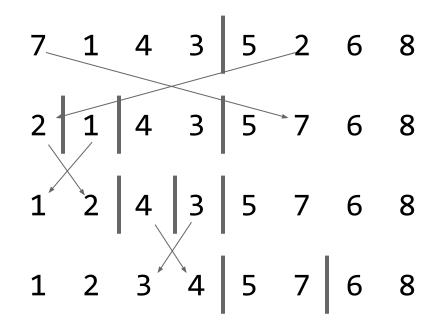


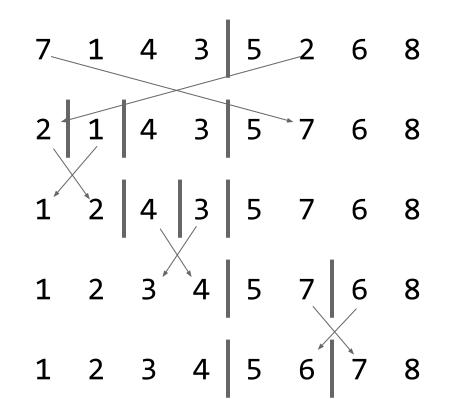


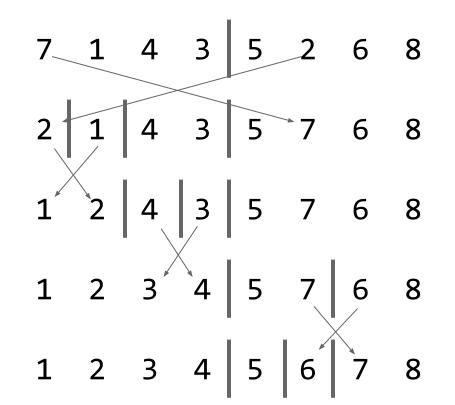


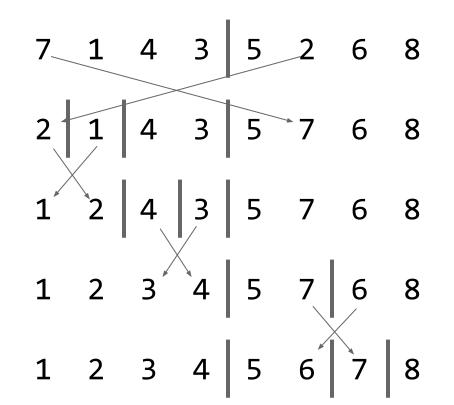


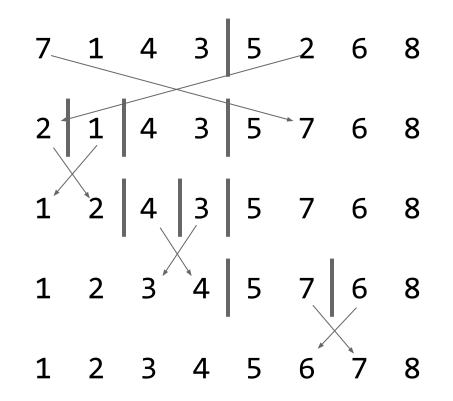












QuickSort: Idealized Algorithm

To sort an array of size *n*:

- 1. Pick a *pivot* value (median?)
- 2. Swap values until:
 - a. elements at [1, n/2) are \leq pivot
 - b. elements at [n/2, n) are > pivot
- 3. Recursively sort the lower half
- 4. Recursively sort the upper half

QuickSort: Idealized Version

```
def idealizedQuickSort(arr: Array[Int], from: Int, until: Int): Unit = {
    if(until - from < 1) { return }
    val pivot = ???
    var low = from, high = until -1
    while(low < high) {
        while(arr(low) <= pivot && low < high){ low ++ }
        if(low < high) {
            while(arr(high) > pivot && low < high){ high -- }
            swap(arr, low, high)</pre>
```

```
idealizedQuickSort(arr, from = 0, until = low)
idealizedQuickSort(arr, from = low, until = until)
```

Great! So...how do we find the median...?

Great! So...how do we find the median...?

Finding the median takes O(n log(n)) for an unsorted array :(

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in O(1). Now what is our complexity?

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in O(1). Now what is our complexity?

$$T_{quicksort}(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(n) + 0 & \text{otherwise} \end{cases}$$

QuickSort: Hypothetical

Imagine a world where we can obtain a pivot in O(1). Now what is our complexity?

$$T_{quicksort}(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(n) + 0 & \text{otherwise} \end{cases}$$

Compare to Merge Sort:

$$T_{mergesort}(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(1) + \Theta(n) & \text{otherwise} \end{cases}$$

QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)?

QuickSort: Attempt #2

So how can we pick a pivot value (in O(1) time)?

Idea: Pick it randomly! On average, half the values will be lower.

QuickSort: Attempt #2

To sort an array of size *n*:

- 1. Pick a value at random as the *pivot*
- 2. Swap values until the array is subdivided into:
 - a. low: array elements < pivot
 - b. pivot
 - c. *high:* array elements > pivot
- 3. Recursively sort low
- 4. Recursively sort *high*

QuickSort: Runtime

What is the worst-case runtime?

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1]

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1] [7,6,5,4,3,2,1],8,[]

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1] [7,6,5,4,3,2,1],8,[] [6,5,4,3,2,1],7,[],8

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1] [7,6,5,4,3,2,1],8,[] [6,5,4,3,2,1],7,[],8 [5,4,3,2,1],6,[],7,8

What if we always pick the worst pivot? [8,7,6,5,4,3,2,1] [7,6,5,4,3,2,1],8,[] [6,5,4,3,2,1],7,[],8 [5,4,3,2,1],6,[],7,8

What is the worst-case runtime?

What is the worst-case runtime?

 $T_{quicksort}(n) \in O(n^2)$

What is the worst-case runtime?

$$T_{quicksort}(n) \in O(n^2)$$

Remember: This is called the unqualified runtime...we don't take any extra context into account

Is the worst case runtime representative?

Is the worst case runtime representative? **No!** (the actual runtime will almost always be faster)

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what **can** we say about runtime?

Let's say we pick Xth largest element for our pivot. What is the runtime (T(n))?

QuickSort

Let's say we pick Xth largest element for our pivot. What is the runtime (T(n))?

$$\begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } X = 1 \\ T(1) + T(n-2) + \Theta(n) & \text{if } X = 2 \\ T(2) + T(n-3) + \Theta(n) & \text{if } X = 3 \\ \vdots \\ T(n-2) + T(1) + \Theta(n) & \text{if } X = n-1 \\ T(n-1) + T(0) + \Theta(n) & \text{if } X = n \end{cases}$$

Probabilities

How likely are we to pick X = k for any specific k?

Probabilities

How likely are we to pick X = k for any specific k? P[X = k] = 1/n

Probability Theory (Great Class...)

If I roll a d6 (6-sided die) k times,

what is the average roll over all possible outcomes?

k = 1

If I rolled a d6 1 time...

Roll	Probability	Outcome
	1/6	1
	1/6	2
	1/6	3
	1/6	4
	1/6	5
	1/6	6

Expected Value

The **Expected Value** of a random variable (ie the number rolled on the d6) is the sum of all outcomes times the probability of that outcome

$$\sum_{i} Probability_i \cdot Contribution_i$$

Expected Value

 \sim

The **Expected Value** of a random variable (ie the number rolled on the d6) is the sum of all outcomes times the probability of that outcome

$$\sum_{i=1}^{6} \frac{1}{6}i = \frac{1}{6} \cdot 1\frac{1}{6} \cdot 2\frac{1}{6} \cdot 3\frac{1}{6} \cdot 4\frac{1}{6} \cdot 5\frac{1}{6} \cdot 6 = 3.5$$

Expected Value

The **Expected Value** of a random variable (ie the number rolled on the d6) is the sum of all outcomes times the probability of that outcome

$$\sum_{i=1}^{6} \frac{1}{6}i = \frac{1}{6} \cdot 1\frac{1}{6} \cdot 2\frac{1}{6} \cdot 3\frac{1}{6} \cdot 4\frac{1}{6} \cdot 5\frac{1}{6} \cdot 6 = 3.5$$

We refer to the expected value of a random variable as **E[X]**

If we roll a d6 twice, does one roll affect the other?

If we roll a d6 twice, does one roll affect the other? **No.** They are independent events.

If we roll a d6 twice, does one roll affect the other? **No.** They are independent events.

If **X** and **Y** are independent then:

E[X+Y] = E[X] + E[Y]

If we roll a d6 twice, does one roll affect the other? **No.** They are independent events.

If **X** and **Y** are independent then:

E[X+Y] = E[X] + E[Y]

If X and Y are our dice rolls, then E[X+Y] = E[X] + E[Y] = 3.5 + 3.5 = 7

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

 $T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1 \\ T(0) + T(n-1) + \Theta(n) & \text{if } n > 1 \land X = 1 \\ T(1) + T(n-2) + \Theta(n) & \text{if } n > 1 \land X = 2 \\ T(2) + T(n-3) + \Theta(n) & \text{if } n > 1 \land X = 3 \\ \vdots \\ T(n-2) + T(1) + \Theta(n) & \text{if } n > 1 \land X = n - 1 \\ T(n-1) + T(0) + \Theta(n) & \text{if } n > 1 \land X = n \end{cases}$

QuickSort Runtime

...and convert it to the expected runtime over the variable **X**

$$E[T(n)] = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ E[T(X-1) + T(n-X)] + \Theta(n) & \text{otherwise} \end{cases}$$

QuickSort Runtime

...and convert it to the expected runtime over the variable **X**

$$E[T(n)] = \begin{cases} \Theta(1) & \text{if } n \le 1\\ E[T(X-1)] + E[T(n-X)] + \Theta(n) & \text{otherwise} \end{cases}$$

QuickSort Runtime

...and convert it to the expected runtime over the variable X

$$E[T(n)] = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ E[T(X-1)] + E[T(n-X)] + \Theta(n) & \text{otherwise} \end{cases}$$

This looks like the runtime of MergeSort, so now our hypothesis is that our **Expected Runtime** is **n log(n)**

Back to Induction

Hypothesis: $E[T(n)] \in O(n \log(n))$

Base Case: $E[T(1)] \le c (1 \log(1))$

Base Case: $E[T(1)] \le c (1 \log(1))$ $E[T(1)] \le c (1 \cdot 0)$

Base Case: $E[T(1)] \le c \ (1 \ \log(1))$ $E[T(1)] \le c \ (1 \ \cdot 0)$ $E[T(1)] \le 0$

Base Case (Take Two): $E[T(2)] \le c (2 \log(2))$

Base Case (Take Two): $E[T(2)] \le c \ (2 \log(2))$ $2 \cdot E_i[T(i-1)] + 2c_1 \le 2c$

Base Case (Take Two): $E[T(2)] \le c \ (2 \log(2))$ $2 \cdot E_i[T(i-1)] + 2c_1 \le 2c$ $2 \cdot (T(0)/2 + T(1)/2) + 2c_1 \le 2c$

Base Case (Take Two): $E[T(2)] \le c \ (2 \log(2))$ $2 \cdot E_i[T(i-1)] + 2c_1 \le 2c$ $2 \cdot (T(0)/2 + T(1)/2) + 2c_1 \le 2c$ $T(0) + T(1) + 2c_1 \le 2c$

Base Case (Take Two): $E[T(2)] \le c \ (2 \log(2))$ $2 \cdot E_i[T(i-1)] + 2c_1 \le 2c$ $2 \cdot (T(0)/2 + T(1)/2) + 2c_1 \le 2c$ $T(0) + T(1) + 2c_1 \le 2c$ $2c_0 + 2c_1 \le 2c$

Base Case (Take Two): $E[T(2)] \le c (2 \log(2))$ $2 \cdot E_i[T(i-1)] + 2C_1 \le 2C$ $2 \cdot (T(0)/2 + T(1)/2) + 2c_1 \le 2c$ $T(0) + T(1) + 2c_1 \le 2c$ $2c_0 + 2c_1 \le 2c$ True for any $c \ge c_0 + c_1$

Assume: $E[T(n')] \le c (n' \log(n'))$ for all n' < nShow: $E[T(n)] \le c (n \log(n))$

Assume: $E[T(n')] \le c (n' \log(n'))$ for all n' < nShow: $E[T(n)] \le c (n \log(n))$

$$\frac{2}{n} \left(\sum_{i=0}^{n-1} E[T(i)] \right) + c_1 \le cn \log(n)$$

Assume: $E[T(n')] \le c (n' \log(n'))$ for all n' < nShow: $E[T(n)] \le c (n \log(n))$

$$\frac{2}{n} \left(\sum_{i=0}^{n-1} E[T(i)] \right) + c_1 \le cn \log(n)$$
$$\frac{2}{n} \left(\sum_{i=0}^{n-1} ci \log(i) \right) + c_1 \le cn \log(n)$$

Assume: $E[T(n')] \le c (n' \log(n'))$ for all n' < n**Show:** $E[T(n)] \le c (n \log(n))$ $\frac{2}{n} \left(\sum_{i=0}^{n-1} E[T(i)] \right) + c_1 \le cn \log(n)$ $\frac{2}{n} \left(\sum_{i=0}^{n-1} ci \log(i) \right) + c_1 \le cn \log(n)$ $2\left(\frac{n-1}{2}\right)$

$$c\frac{2}{n}\left(\sum_{i=0}^{n} i\log(n)\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1} i\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1} i\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1} i\right) + c_1 \le cn\log(n)$$
$$c\frac{2\log(n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right) + c_1 \le cn\log(n)$$
$$c\frac{\log(n)}{n}\left(n^2 - n\right) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1} i\log(n)\right) + c_1 \le cn\log(n)$$

$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1} i\right) + c_1 \le cn\log(n)$$

$$c\frac{2\log(n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right) + c_1 \le cn\log(n)$$

$$c\frac{\log(n)}{n}\left(n^2 - n\right) + c_1 \le cn\log(n)$$

$$cn\log(n) - c\log(n) + c_1 \le cn\log(n)$$

$$c\frac{2}{n}\left(\sum_{i=0}^{n-1}i\log(n)\right) + c_{1} \leq cn\log(n)$$

$$c\frac{2\log(n)}{n}\left(\sum_{i=0}^{n-1}i\right) + c_{1} \leq cn\log(n)$$

$$c\frac{2\log(n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right) + c_{1} \leq cn\log(n)$$

$$c\frac{\log(n)}{n}\left(n^{2}-n\right) + c_{1} \leq cn\log(n)$$

$$cn\log(n) - c\log(n) + c_{1} \leq cn\log(n)$$

$$c_{1} \leq c\log(n)$$

QuickSort

So...is QuickSort O(n log(n))...?

No!

What guarantees do you get?

If f(n) is a Tight Bound

The algorithm always runs in *cf*(*n*) steps

If f(n) is a Worst-Case Bound

The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average Bound ...we don't have any guarantees

What guarantees do you get?

If f(n) is a Tight Bound

The algorithm always runs in *cf*(*n*) steps

If f(n) is a Worst-Case Bound

The algorithm always runs in at most cf(n)

← Unqualified runtime

If f(n) is an Amortized Worst-Case Bound n invocations of the algorithm **always** run in cnf(n) steps

If f(n) is an Average Bound

...we don't have any guarantees