CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Stacks and Queues
 Textbook Ch. 15

Announcements

- WA1 due tonight @ Midnight. Check your submissions!
- PA2 will be released by the end of the week (hopefully tonight) so keep an eye on Piazza

Recap

QuickSort

- Divide and Conquer sorting algorithm like MergeSort
- All of the work for Merge Sort happened during the combine step
- QuickSort attempts to move the work to the divide step
- Divide: Move small elements to the left, and big elements to the right
- Conquer: Recursively call QuickSort on left and right halves
- Combine: ...nothing

Recap

QuickSort

- Divide and Conquer sorting algorithm like MergeSort
- All of the work for Merge Sort happened during the combine step
- QuickSort attempts to move the work to the divide step
- Divide: Move small elements to the left, and big elements to the right
- Conquer: Recursively call QuickSort on left and right halves
- Combine: ...nothing

QuickSort Review

Divide: Move small elements to the left and big elements to the right How do we define what is big and what is small?

QuickSort Review

Divide: Move small elements to the left and big elements to the right
How do we define what is big and what is small?
Pick a pivot value

QuickSort Review

Divide: Move small elements to the left and big elements to the right
How do we define what is big and what is small?
Pick a pivot value
[smaller than pivot], pivot, [larger than pivot]

QuickSort Review

Divide: Move small elements to the left and big elements to the right
How do we define what is big and what is small?
Pick a pivot value
[smaller than pivot], pivot, [larger than pivot]
How do we pick a pivot?

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

QuickSort Review

$$
\begin{aligned}
& {[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
& {[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]}
\end{aligned}
$$

QuickSort Review

$$
\begin{aligned}
& {[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
& {[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]}
\end{aligned}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]}
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]}
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15]
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15]
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[14,13,9,12,11,10,15]
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[14,13,9,12,11,10,15]
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[11,10,9], 12,[14,13,15]
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[11,10,9], 12,[14,13,15]
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[11,10,9], 12,[14,13,15] \\
1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
{[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
{[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
{[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[14,13,9,12,11,10,15] \\
1,2,3,4,5,6,7,8,[11,10,9], 12,[14,13,15] \\
1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]
\end{gathered}
$$

QuickSort Review

$$
\begin{aligned}
& {[4,1,8,13,12,6,2,14,7,9,3,5,11,10,15]} \\
& {[4,1,7,3,6,2,5], 8,[14,13,9,12,11,10,15]} \\
& {[1,2,3], 4,[6,7,5], 8,[14,13,9,12,11,10,15]} \\
& 1,2,3,4,[6,7,5], 8,[14,13,9,12,11,10,15] \\
& 1,2,3,4,5,6,7,8,[14,13,9,12,11,10,15] \\
& 1,2,3,4,5,6,7,8,[11,10,9], 12,[14,13,15] \\
& 1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15] \\
& \mathbf{1}, \mathbf{2}, \mathbf{3}, 4,5,6,7,8,9,10,11,12,13,14,15
\end{aligned}
$$

QuickSort Review

If our pivot was the median value, then our list would be split in half by the divide step, resulting in the same runtime as MergeSort $O(n \log (n))$.

But finding the median value is expensive...(it also costs $n \log (n)$).
So what if we pick one randomly instead?

Expected Value

If I roll a 6 -sided die, the probability of a particular side being rolled is $1 / 6$ If X is a random variable representing this die roll, then the expected value of X is:

$$
\begin{gathered}
E[X]=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 2+\frac{1}{6} \cdot 3+\frac{1}{6} \cdot 4+\frac{1}{6} \cdot 5+\frac{1}{6} \cdot 6 \\
E[X]=\sum_{i=1}^{6} \frac{1}{6} i=3.5
\end{gathered}
$$

Expected Value

If I roll a 20 -sided die, the probability of a particular side being rolled is $1 / 20$ If X is a random variable representing this die roll, then the expected value of X is:

$$
E[X]=\frac{1}{20} \cdot 1+\frac{1}{20} \cdot 2+\ldots+\frac{1}{20} \cdot 20=\sum_{i=1}^{20} \frac{1}{20} i
$$

Expected Value

If I roll an n-sided die, the probability of a particular side being rolled is $1 / n$
If X is a random variable representing this die roll, then the expected value of X is:

$$
\begin{gathered}
E[X]=\frac{1}{n} \cdot 1+\frac{1}{n} \cdot 2+\ldots+\frac{1}{n} \cdot n=\sum_{i=1}^{n} \frac{1}{n} i \\
E[X]=\sum_{i} P_{i} \cdot X_{i}
\end{gathered}
$$

QuickSort Review

Picking a pivot value randomly from the n elements of our sequence is the same as rolling an n-sided die.

There is a $1 / n$ probability in any particular value being selected.
$X=k$ means that X is the k th largest value, and the expected value of X corresponds to the median value.

QuickSort Review

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ T(0)+T(n-1)+\Theta(n) & \text { if } n>1 \wedge X=1 \\ T(1)+T(n-2)+\Theta(n) & \text { if } n>1 \wedge X=2 \\ T(2)+T(n-3)+\Theta(n) & \text { if } n>1 \wedge X=3 \\ . & \\ T(n-2)+T(1)+\Theta(n) & \text { if } n>1 \wedge X=n-1 \\ T(n-1)+T(0)+\Theta(n) & \text { if } n>1 \wedge X=n\end{cases}
$$

QuickSort Review

$$
E[T(n)]= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ E[T(X-1)+T(n-X)]+\Theta(n) & \text { otherwise }\end{cases}
$$

QuickSort Review

$$
E[T(n)]= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ E[T(X-1)+T(n-X)]+\Theta(n) & \text { otherwise }\end{cases}
$$

Expected value of two independent events can be split up

QuickSort Review

$$
E[T(n)]= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ E[T(X-1)]+E[T(n-X)]+\Theta(n) & \text { otherwise }\end{cases}
$$

QuickSort Review

$$
E[T(n)]= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ E[T(X-1)]+E[T(n-X)]+\Theta(n) & \text { otherwise }\end{cases}
$$

How are these two terms related?

QuickSort Review

$$
E[T(X-1)]
$$

QuickSort Review

$$
\begin{gathered}
E[T(X-1)] \\
=\sum_{i=1}^{n} P_{i} \cdot T\left(X_{i}-1\right)
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
E[T(X-1)] \\
=\sum_{i=1}^{n} P_{i} \cdot T\left(X_{i}-1\right) \\
=\sum_{i=1}^{n} \frac{1}{n} \cdot T(i-1)
\end{gathered}
$$

QuickSort Review

$$
\begin{gathered}
E[T(X-1)] \\
=\sum_{i=1}^{n} P_{i} \cdot T\left(X_{i}-1\right) \\
=\sum_{i=1}^{n} \frac{1}{n} \cdot T(i-1) \\
=\sum_{i=1}^{n} \frac{1}{n} \cdot T(n-i)
\end{gathered}
$$

QuickSort Review

$$
\begin{aligned}
& E[T(X-1)] \\
= & \sum_{i=1}^{n} P_{i} \cdot T\left(X_{i}-1\right) \\
= & \sum_{i=1}^{n} \frac{1}{n} \cdot T(i-1) \\
= & \sum_{i=1}^{n} \frac{1}{n} \cdot T(n-i)=E[T(n-X)]
\end{aligned}
$$

QuickSort Review

$$
\begin{aligned}
& E[T(X-1)] \\
= & \sum_{i=1}^{n} P_{i} \cdot T\left(X_{i}-1\right) \\
= & \sum_{i=1}^{n} \frac{1}{n} \cdot T(i-1) \\
= & \frac{1}{n} \cdot T(n-i)=E[T(n-X)]
\end{aligned}
$$

QuickSort Review

$$
E[T(n)]= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ 2 E[T(X-1)]+\Theta(n) & \text { otherwise }\end{cases}
$$

QuickSort Review

$$
E[T(n)]= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ 2 E[T(X-1)]+\Theta(n) & \text { otherwise }\end{cases}
$$

Each $T(X-1)$ is independent, so the expected values can be split out

QuickSort Review

$$
E[T(n)]= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ \frac{2}{n}\left(\sum_{i=0}^{n-1} E[T(i)]\right)+\Theta(n) & \text { otherwise }\end{cases}
$$

Back to Induction

Hypothesis: $E[T(n)] \in O(n \log (n))$

Base Case

Base Case: $E[T(2)] \leq c(2 \log (2))$

Base Case

$$
\begin{gathered}
\text { Base Case: } E[T(2)] \leq c(2 \log (2)) \\
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c
\end{gathered}
$$

Base Case

$$
\begin{gathered}
\text { Base Case: } E[T(2)] \leq c(2 \log (2)) \\
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c \\
2 \cdot(T(0) / 2+T(1) / 2)+2 c_{1} \leq 2 c
\end{gathered}
$$

Base Case

$$
\begin{gathered}
\text { Base Case: } E[T(2)] \leq c(2 \log (2)) \\
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c \\
2 \cdot(T(0) / 2+T(1) \times 2)+2 c_{1} \leq 2 c \\
T(0)+T(1)+2 c_{1} \leq 2 c
\end{gathered}
$$

Base Case

$$
\begin{gathered}
\text { Base Case: } E[T(2)] \leq c(2 \log (2)) \\
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c \\
2 \cdot(T(0) / 2+T(1) / 2)+2 c_{1} \leq 2 c \\
T(0)+T(1)+2 c_{1} \leq 2 c \\
2 c_{0}+2 c_{1} \leq 2 c
\end{gathered}
$$

Base Case

$$
\begin{gathered}
\text { Base Case: } E[T(2)] \leq c(2 \log (2)) \\
2 \cdot E_{i}[T(i-1)]+2 c_{1} \leq 2 c \\
2 \cdot(T(0) / 2+T(1) / 2)+2 c_{1} \leq 2 c \\
T(0)+T(1)+2 c_{1} \leq 2 c \\
2 c_{0}+2 c_{1} \leq 2 c
\end{gathered}
$$

True for any $c \geq c_{0}+c_{1}$

Inductive Case

Assume: $E\left[T\left(n^{\prime}\right)\right] \leq c\left(n^{\prime} \log \left(n^{\prime}\right)\right)$ for all $n^{\prime}<n$
Show: $E[T(n)] \leq c(n \log (n))$

Inductive Case

Assume: $E\left[T\left(n^{\prime}\right)\right] \leq c\left(n^{\prime} \log \left(n^{\prime}\right)\right)$ for all $n^{\prime}<n$
Show: $E[T(n)] \leq c(n \log (n))$

$$
\frac{2}{n}\left(\sum_{i=0}^{n-1} E[T(i)]\right)+c_{1} \leq c n \log (n)
$$

Inductive Case

Assume: $E\left[T\left(n^{\prime}\right)\right] \leq c\left(n^{\prime} \log \left(n^{\prime}\right)\right)$ for all $n^{\prime}<n$

Show: $E[T(n)] \leq c(n \log (n))$

Our i here is always less than n, so we can use our assumption to substitute

$$
\begin{aligned}
& \frac{2}{n}\left(\sum_{i=0}^{n-1} E[T[i])+c_{1} \leq c n \log (n)\right. \\
& \frac{2}{n}\left(\sum_{i=0}^{n-1} c i \log (i)\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

Assume: $E\left[T\left(n^{\prime}\right)\right] \leq c\left(n^{\prime} \log \left(n^{\prime}\right)\right)$ for all $n^{\prime}<n$
Show: $E[T(n)] \leq c(n \log (n))$

$$
\begin{aligned}
& \frac{2}{n}\left(\sum_{i=0}^{n-1} E[T(i)]\right)+c_{1} \leq c n \log (n) \\
& \frac{2}{n}\left(\sum_{i=0}^{n-1} c i \log (i)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n)
$$

Inductive Case

$$
\begin{aligned}
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
\begin{aligned}
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
\begin{aligned}
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right)+c_{1} \leq c n \log (n) \\
& c \frac{\log (n)}{n}\left(n^{2}-n\right)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
\begin{aligned}
& c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n) \\
& c \frac{2 \log (n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right)+c_{1} \leq c n \log (n) \\
& c \frac{\log (n)}{n}\left(n^{2}-n\right)+c_{1} \leq c n \log (n) \\
& c n \log (n)-c \log (n)+c_{1} \leq c n \log (n)
\end{aligned}
$$

Inductive Case

$$
\begin{gathered}
c \frac{2}{n}\left(\sum_{i=0}^{n-1} i \log (n)\right)+c_{1} \leq c n \log (n) \\
c \frac{2 \log (n)}{n}\left(\sum_{i=0}^{n-1} i\right)+c_{1} \leq c n \log (n) \\
c \frac{2 \log (n)}{n}\left(\frac{(n-1)(n-1+1)}{2}\right)+c_{1} \leq c n \log (n) \\
c \frac{\log (n)}{n}\left(n^{2}-n\right)+c_{1} \leq c n \log (n) \\
c n \log (n)-c \log (n)+c_{1} \leq c n \log (n) \\
c_{1} \leq c \log (n)
\end{gathered}
$$

QuickSort

So...is QuickSort $O(n \log (n))$...?
No!

What guarantees do you get?

If $f(n)$ is a Tight Bound
The algorithm always runs in $c f(n)$ steps
If $f(n)$ is a Worst-Case Bound
The algorithm always runs in at most $c f(n)$
If $f(n)$ is an Amortized Worst-Case Bound
n invocations of the algorithm always run in $\operatorname{cnf}(n)$ steps
If $f(n)$ is an Average Bound
...we don't have any guarantees

Analysis Tools/Techniques	ADTS	Data Structures
Asymptotic Analysis, (Unqualified) Runtime Bounds		
	Seq	Array
Amortized Runtime	Seq, Buffer	ArrayBuffer
	Seq	Linked Lists
Recursive analysis, divide and conquer, Average/Expected Runtime		
	Stack, Queue	

Analysis Tools/Techniques	ADTs	Data Structures
Asymptotic Analysis, (Unqualified) Runtime Bounds		
	Seq	Array
Amortized Runtime	Seq, Buffer	ArrayBuffer
	Seq	Linked Lists
Recursive analysis, divide and conquer, Average/Expected Runtime		
	Stack, Queue	

Current Road Map

Analysis Tools/Techniques	ADTs	Data Structures
Asymptotic Analysis, (Unqualified) Runtime Bounds		
	Seq	Array
Amortized Runtime	Seq, Buffer	ArrayBuffer
	Seq	Linked Lists
Recursive analysis, divide and conquer, Average/Expected Runtime		
	Stack, Queue	

Current Road Map

Analysis Tools/Techniques	ADTs	Data Structures
Asymptotic Analysis, (Unqualified) Runtime Bounds		
	Seq	Array
Amortized Runtime	Seq, Buffer	ArrayBuffer
	Seq	Linked Lists
Recursive analysis, divide and conquer, Average/Expected Runtime		
	Stack, Queue	

Current Road Map

Analysis Tools/Techniques	ADTs	Data Structures
Asymptotic Analysis, (Unqualified) Runtime Bounds		
	Seq	Array
Amortized Runtime	Seq, Buffer	ArrayBuffer
	Seq	Linked Lists
Recursive analysis, divide and conquer, Average/Expected Runtime		
	Stack, Queue	

Current Road Map

Analysis Tools/Techniques	ADTs	Data Structures
Asymptotic Analysis, (Unqualified) Runtime Bounds		
	Seq	Array
Amortized Runtime	Seq, Buffer	ArrayBuffer
	Seq	Linked Lists
Recursive analysis, divide and conquer, Average/Expected Runtime	Stack, Queue	

Analysis Tools/Techniques	ADTs	Data Structures
	Stack, Queue	EdgeList, Adjacency List, Adjacency Matrix
	Graphs	Heaps, Trees
BST, AVL Tree, Red-Black Tree		
	HashTables	

Miscellaneous

mutable. Seq ADT

mutable. IndexedSeq (ie Array)
Efficiency apply(), update()
mutable.Buffer (ie ArrayBuffer, ListBuffer)
Efficiency apply(), update(), append()

Stacks

A stack of objects on top of one another

Push Put a new object on top of the stack
Pop Remove the object on top of the stack
Top Peek at what's on top of the stack

Stacks

Stacks

$$
\begin{aligned}
& \text { s.push ("Bob") } \\
& \text { s.push ("Mary") }
\end{aligned}
$$

"Mary"
"Bob"

Stacks

```
s.push("Bob")
s.push("Mary")
s.push("Sue")
```

"Sue"
"Mary"
"Bob"

Stacks

```
s.push("Bob")
s.push("Mary")
s.push("Sue")
s.pop()
```

"Mary"
"Bob"

Stacks

```
s.push("Bob")
s.push("Mary")
s.push("Sue")
s.pop()
s.push("Steve")
```

"Steve"
"Mary"
"Bob"

Stacks

```
s.push("Bob")
s.push("Mary")
s.push("Sue")
s.pop()
s.push("Steve")
s.pop()
```

"Mary"
"Bob"

Stacks in Practice

- Storing function variables in a "call stack"
- Certain types of parsers ("context free")
- Backtracking search
- Reversing Sequences

Stacks

trait Stack[A] \{
def push(element: A) : Unit
def top: A
def pop: A
\}

Stacks

```
class ListStack[A] extends Stack[A] {
    val _store = new SinglyLinkedList()
```

 def push (element: A) : Unit =
 _store.prepend (element)
 def top: A =
 _store.head
 def pop: A =
 _store.remove (0)
 \}

Stacks

```
class ListStack[A] extends Stack[A] {
    val _store = new SinglyLinkedIist()
```

 def push (element: A) : Unit =
 _store. prepend (element)
 def top: A =
 _store.head
 def pop: \(\mathrm{A}=\)
 _store. remove (0)
 \}

Stacks

```
class ListStack[A] extends Stack[A] {
    val _store = new SinglyLinkedIist()
    def push(element: A) : Unit = Q(1)
        _store.prepend (element)
    def top: A = Q(1)
        _store.head
```

 def pop: A =
 _store.remove (0) \(\quad(1)\)
 \}

Stacks

class ArrayBufferStack[A] extends Stack[A] \{ val _store = new ArrayBuffer()
def push (element: A) : Unit = _store. append (element)
def top: A =
_store.last
def pop: A =
_store.remove (store.length-1)
\}

Stacks

class ArrayBufferStack[A] extends Stack[A] \{ val _store = new ArrayBuffer()
def push (element: A) : Unit = _store. append (element)
def top: A =
_store.last
def pop: A =
_store.remove (store.length-1)

What is the runtime?

Stacks

class ArrayBufferStack[A] extends Stack[A] \{ val _store = new ArrayBuffer()
def push (element: A) : Unit $=$ Amortized O (1) _store. append (element)
def top: $\mathrm{A}=\mathbf{Q}(1)$
_store.last
def pop: $\mathrm{A}=\boldsymbol{\Theta}(1)$
What is the runtime?
_store. remove (store. length-1)
\}

Stacks in Scala

Scala's Stack implementation is based on ArrayBuffer; Keeping memory together is worth the overhead of amortized $O(1)$.

Queue

Outside of the US, "queueing" is lining up, ie at Starbucks

Enqueue Put a new object at the end of the queue
Dequeue Remove the next object in the queue
Head Peek at the next object in the queue

Queue

Front
Back

Queue

enqueue("Bob")

Front

Back

Queue

```
enqueue("Bob")
enqueue("Mary")
```

Front

Back

Queue

```
enqueue("Bob")
enqueue("Mary")
enqueue("Sue")
```

Front

Back

Queue

```
enqueue("Bob")
enqueue("Mary")
enqueue("Sue")
dequeue()
```

Front

Back

Queue

```
enqueue("Bob")
enqueue("Mary")
enqueue("Sue")
dequeue()
enqueue("Steve")
```

Front

Back

Queue

```
enqueue("Bob")
enqueue("Mary"
enqueue("Sue")
dequeue()
enqueue("Steve")
dequeue()
Front
```



```
Back
```


Queues vs Stacks

Queue First in, First Out (FIFO)
Statcks Last in, First Out (LIFO / FILO)

Queues in Practice

- Delivering network packets, emails, twitter/tiktok/instagram
- Scheduling CPU cycles
- Deferring long-running tasks

Queues

```
trait Queue[A] {
    def enqueue(element: A) : Unit
    def dequeue: A
    def head: A
}
```


Queues

class ListQueue[A] extends Queue[A] \{
val _store = new DoublyLinkedList()
def enqueue (element: A) : Unit =
_store. append (element)
def head: A =
_store.head
def dequeue: $\mathrm{A}=$
_store. remove (0)
\}

Queues

class ListQueue[A] extends Queue[A] \{
val _store $=$ new DoublyLinkedList()
def enqueue (element: A) : Unit = _store. append (element)
def head: $\mathbf{A}=$ _store.head

What is the runtime?
def dequeue: $\mathbf{A}=$ _store. remove (0)
\}

Queues

class ListQueue[A] extends Queue[A] \{
val _store $=$ new DoublyLinkedList()
def enqueue (element: A) : Unit $=\mathbf{Q}(1)$ _store. append (element)
def head: $\mathbf{A}=\boldsymbol{Q}(1)$
_store.head
What is the runtime?
def dequeue: $\mathrm{A}=$ _store.remove (0) Q(1)
\}

Queues

Thought Experiment: How can we use an array to build a queue?

