
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Stacks and Queues
Textbook Ch. 15

mailto:epmikida@buffalo.edu

Announcements

● WA1 due tonight @ Midnight. Check your submissions!
● PA2 will be released by the end of the week (hopefully tonight) so keep

an eye on Piazza

Recap

QuickSort

● Divide and Conquer sorting algorithm like MergeSort
○ All of the work for Merge Sort happened during the combine step
○ QuickSort attempts to move the work to the divide step

● Divide: Move small elements to the left, and big elements to the right
● Conquer: Recursively call QuickSort on left and right halves
● Combine: …nothing

Recap

QuickSort

● Divide and Conquer sorting algorithm like MergeSort
○ All of the work for Merge Sort happened during the combine step
○ QuickSort attempts to move the work to the divide step

● Divide: Move small elements to the left, and big elements to the right
● Conquer: Recursively call QuickSort on left and right halves
● Combine: …nothing

QuickSort Review

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

QuickSort Review

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value

QuickSort Review

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value

[smaller than pivot], pivot, [larger than pivot]

QuickSort Review

Divide: Move small elements to the left and big elements to the right

How do we define what is big and what is small?

Pick a pivot value

[smaller than pivot], pivot, [larger than pivot]

How do we pick a pivot?

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,[6,7,5],8,[14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,[11,10,9],12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1,2,3,4,5,6,7,8,9,10,11,12,[14,13,15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]

QuickSort Review

[4, 1, 8, 13, 12, 6, 2, 14, 7, 9, 3, 5, 11, 10, 15]

[4, 1, 7, 3, 6, 2, 5], 8, [14, 13, 9, 12, 11, 10, 15]

[1, 2, 3], 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, [6, 7, 5], 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [14, 13, 9, 12, 11, 10, 15]

1, 2, 3, 4, 5, 6, 7, 8, [11, 10, 9], 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, [14, 13, 15]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

QuickSort Review

If our pivot was the median value, then our list would be split in half by the
divide step, resulting in the same runtime as MergeSort O(nlog(n)).

But finding the median value is expensive…(it also costs nlog(n)).

So what if we pick one randomly instead?

Expected Value

If I roll a 6-sided die, the probability of a particular side being rolled is ⅙

If X is a random variable representing this die roll, then the expected value of X is:

Expected Value

If I roll a 20-sided die, the probability of a particular side being rolled is 1/20

If X is a random variable representing this die roll, then the expected value of X is:

Expected Value

If I roll an n-sided die, the probability of a particular side being rolled is 1/n

If X is a random variable representing this die roll, then the expected value of X is:

QuickSort Review

Picking a pivot value randomly from the n elements of our sequence is the
same as rolling an n-sided die.

There is a 1/n probability in any particular value being selected.

X = k means that X is the kth largest value, and the expected value of X
corresponds to the median value.

QuickSort Review

QuickSort Review

QuickSort Review

Expected value of two independent events can be split up

QuickSort Review

QuickSort Review

How are these two terms related?

QuickSort Review

QuickSort Review

QuickSort Review

QuickSort Review

QuickSort Review

QuickSort Review

They are equivalent!!

QuickSort Review

QuickSort Review

Each T(X-1) is independent, so the expected values can be split out

QuickSort Review

Back to Induction

Hypothesis: E[T(n)] ∈ O(n log(n))

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

2c0 + 2c1 ≤ 2c

Base Case

Base Case: E[T(2)] ≤ c (2 log(2))

2 · Ei[T(i - 1)] + 2c1 ≤ 2c

2 · (T(0)/2 + T(1)/2) + 2c1 ≤ 2c

T(0) + T(1) + 2c1 ≤ 2c

2c0 + 2c1 ≤ 2c

True for any c ≥ c0 + c1

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Our i here is always less
than n, so we can use
our assumption to
substitute

Inductive Case

Assume: E[T(n')] ≤ c (n' log(n')) for all n' < n

Show: E[T(n)] ≤ c (n log(n))

Inductive Case

Inductive Case

Inductive Case

Inductive Case

Inductive Case

Inductive Case

QuickSort

So…is QuickSort O(n log(n))...?

No!

What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average Bound
…we don't have any guarantees

Current Road
Map

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Seq Array

Amortized Runtime Seq, Buffer ArrayBuffer

Seq Linked Lists

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Stack, Queue

Current Road
Map

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Seq Array

Amortized Runtime Seq, Buffer ArrayBuffer

Seq Linked Lists

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Stack, Queue

Current Road
Map

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Seq Array

Amortized Runtime Seq, Buffer ArrayBuffer

Seq Linked Lists

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Stack, Queue

Current Road
Map

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Seq Array

Amortized Runtime Seq, Buffer ArrayBuffer

Seq Linked Lists

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Stack, Queue

Current Road
Map

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Seq Array

Amortized Runtime Seq, Buffer ArrayBuffer

Seq Linked Lists

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Stack, Queue

Current Road
Map

We are here →

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Seq Array

Amortized Runtime Seq, Buffer ArrayBuffer

Seq Linked Lists

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Stack, Queue

Looking
Ahead…

Analysis
Tools/Techniques

ADTs Data
Structures

Stack, Queue

Graphs EdgeList,
Adjacency List,
Adjacency Matrix

Heaps, Trees BST, AVL Tree,
Red-Black Tree

HashTables

Miscellaneous

mutable.Seq ADT

mutable.IndexedSeq (ie Array)
Efficiency apply(), update()

mutable.Buffer (ie ArrayBuffer, ListBuffer)
Efficiency apply(), update(), append()

mutable.Stack
Efficient push(), pop(), top()

mutable.Queue
Efficient enqueue(), dequeue(), head()

Stacks

A stack of objects on top of one another

Push Put a new object on top of the stack

Pop Remove the object on top of the stack

Top Peek at what's on top of the stack

Stacks

s.push("Bob")

"Bob"

Stacks

s.push("Bob")

s.push("Mary")

"Bob"

"Mary"

Stacks

s.push("Bob")

s.push("Mary")

s.push("Sue")

"Bob"

"Mary"

"Sue"

Stacks

s.push("Bob")

s.push("Mary")

s.push("Sue")

s.pop()

"Bob"

"Mary"

Stacks

s.push("Bob")

s.push("Mary")

s.push("Sue")

s.pop()

s.push("Steve")

"Bob"

"Mary"

"Steve"

Stacks

s.push("Bob")

s.push("Mary")

s.push("Sue")

s.pop()

s.push("Steve")

s.pop() "Bob"

"Mary"

Stacks in Practice

● Storing function variables in a "call stack"
● Certain types of parsers ("context free")
● Backtracking search
● Reversing Sequences

Stacks

trait Stack[A] {
 def push(element: A): Unit
 def top: A
 def pop: A
}

Stacks

class ListStack[A] extends Stack[A] {
 val _store = new SinglyLinkedList()

 def push(element: A): Unit =
 _store.prepend(element)

 def top: A =
 _store.head

 def pop: A =
 _store.remove(0)
 }

Stacks

class ListStack[A] extends Stack[A] {
 val _store = new SinglyLinkedList()

 def push(element: A): Unit =
 _store.prepend(element)

 def top: A =
 _store.head

 def pop: A =
 _store.remove(0)
 }

What is the runtime?

Stacks

class ListStack[A] extends Stack[A] {
 val _store = new SinglyLinkedList()

 def push(element: A): Unit =
 _store.prepend(element)

 def top: A =
 _store.head

 def pop: A =
 _store.remove(0)
 }

What is the runtime?

𝚯(1)

𝚯(1)

𝚯(1)

Stacks

class ArrayBufferStack[A] extends Stack[A] {
 val _store = new ArrayBuffer()

 def push(element: A): Unit =
 _store.append(element)

 def top: A =
 _store.last

 def pop: A =
 _store.remove(store.length-1)
 }

Stacks

class ArrayBufferStack[A] extends Stack[A] {
 val _store = new ArrayBuffer()

 def push(element: A): Unit =
 _store.append(element)

 def top: A =
 _store.last

 def pop: A =
 _store.remove(store.length-1)
 }

What is the runtime?

Stacks

class ArrayBufferStack[A] extends Stack[A] {
 val _store = new ArrayBuffer()

 def push(element: A): Unit =
 _store.append(element)

 def top: A =
 _store.last

 def pop: A =
 _store.remove(store.length-1)
 }

What is the runtime?

Amortized O(1)

𝚯(1)

𝚯(1)

Stacks in Scala

Scala's Stack implementation is based on ArrayBuffer; Keeping
memory together is worth the overhead of amortized O(1).

Queue

Outside of the US, "queueing" is lining up, ie at Starbucks

Enqueue Put a new object at the end of the queue

Dequeue Remove the next object in the queue

Head Peek at the next object in the queue

Queue

Front Back

Queue

enqueue("Bob")

"Bob"Front Back

Queue

enqueue("Bob")
enqueue("Mary")

"Bob" "Mary"Front Back

Queue

enqueue("Bob")
enqueue("Mary")
enqueue("Sue")

"Bob" "Mary" "Sue"Front Back

Queue

enqueue("Bob")
enqueue("Mary")
enqueue("Sue")
dequeue()

"Mary" "Sue"Front Back

Queue

enqueue("Bob")
enqueue("Mary")
enqueue("Sue")
dequeue()
enqueue("Steve")

"Mary" "Sue" "Steve"Front Back

Queue

enqueue("Bob")
enqueue("Mary"
enqueue("Sue")
dequeue()
enqueue("Steve")
dequeue()

"Sue" "Steve"Front Back

Queues vs Stacks

Queue First in, First Out (FIFO)

Statcks Last in, First Out (LIFO / FILO)

Queues in Practice

● Delivering network packets, emails, twitter/tiktok/instagram
● Scheduling CPU cycles
● Deferring long-running tasks

Queues

trait Queue[A] {
 def enqueue(element: A): Unit
 def dequeue: A
 def head: A
}

Queues

class ListQueue[A] extends Queue[A] {
 val _store = new DoublyLinkedList()

 def enqueue(element: A): Unit =
 _store.append(element)

 def head: A =
 _store.head

 def dequeue: A =
 _store.remove(0)
 }

Queues

class ListQueue[A] extends Queue[A] {
 val _store = new DoublyLinkedList()

 def enqueue(element: A): Unit =
 _store.append(element)

 def head: A =
 _store.head

 def dequeue: A =
 _store.remove(0)
 }

What is the runtime?

Queues

class ListQueue[A] extends Queue[A] {
 val _store = new DoublyLinkedList()

 def enqueue(element: A): Unit =
 _store.append(element)

 def head: A =
 _store.head

 def dequeue: A =
 _store.remove(0)
 }

What is the runtime?

𝚯(1)

𝚯(1)

𝚯(1)

Queues

Thought Experiment: How can we use an array to build a queue?

