
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

mailto:epmikida@buffalo.edu

Announcements and Feedback

● PA2 testing target on Autolab is open
● Practice midterms on course website

Edge List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode

Edge

label: T
node: LinkedListNode

Storing the list nodes in the
edges/vertices allows us to
remove by reference in 𝚯(1) time

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

← Involves checking every
edge in the graph

Adjacency List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]

Edge

label: T
node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Storing the list of incident edges in
the vertex saves us the time of
checking every edge in the graph.

The edge now stores additional nodes
to ensure removal is still 𝚯(1)

Adjacency List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.incidentEdges: O(deg(vertex))
● vertex.edgeTo: O(deg(vertex))
● Space Used: O(n) + O(m)

Adjacency List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.incidentEdges: O(deg(vertex))
● vertex.edgeTo: O(deg(vertex))
● Space Used: O(n) + O(m)

Now we already know what
edges are incident without
having to check them all

Adjacency Matrix

Destination

U V W

U - a -

V - - b

W c - -

O
rig

in

Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)

Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)

Just change a single entry of the matrix

Resize and copy the
whole matrix

Check the row and
column for that vertex

Check a single entry of the matrix

How does this relate to space of
edge/adjacency lists?

Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)

Just change a single entry of the matrix

Resize and copy the
whole matrix

Check the row and
column for that vertex

Check a single entry of the matrix

How does this relate to space of
edge/adjacency lists? If the matrix is "dense" it's about the same

So…what do we do with our graphs?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Subgraph of G

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Spanning Subgraph of G

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

2 connected
components

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

A Spanning Tree of G

Graph G

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A Spanning Tree of G Another Spanning Tree of G

Now back to the question…Connectivity

How could we represent our maze as a graph?

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

O

X

How could we represent our maze as a graph?

Recall

Searching the maze with a stack
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Searching with a queue?
TBD…

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|)

Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component

Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component

Depth-First Search

Depth-First Search

✓

Depth-First Search

✓

Depth-First Search

✓

✓

Depth-First Search

✓

✓

Depth-First Search

✓

✓

✓

Depth-First Search

✓

✓

✓

Depth-First Search

✓ ✓

✓

✓

Depth-First Search

✓ ✓

✓

✓

Depth-First Search

✓ ✓

✓

✓

✓

DFS

object VertexLabel extends Enumeration
 { val UNEXPLORED, VISITED = Value }

object EdgeLabel extends Enumeration
 { val UNEXPLORED, SPANNING, BACK = Value }

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value]) {
 for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

If the edge is unexplored, explore it

DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

If the edge is unexplored, explore it

If the other endpoint is unexplored, this is a
spanning edge, explore that vertex

DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

If the edge is unexplored, explore it

If the other endpoint is unexplored, this is a
spanning edge, explore that vertex

If the other endpoint is already explored, this is
a back edge

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)

A

B

C

D
E

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)

A

B

C

D
E

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A)

A

B

C

D
E

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,D) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,D) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,E) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,E) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,B)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,D)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)

A

B

C

D
E

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once

○ DFS will not necessarily find the shortest paths

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once

○ DFS will not necessarily find the shortest paths

Depth-First Search Complexity

What's the complexity?

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 /* O(|V|) times */ {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 /* O(|V|) times */ {
 if(v.label == VertexLabel.UNEXPLORED){
 /* ??? */
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)
 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */
 /* O(1) */ {
 /* O(1) */
 DFSOne(graph, w)
 } else {
 /* O(1) */
 }
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */
 /* O(1) */ {
 /* O(1) */
 /* ??? */
 } else {
 /* O(1) */
 }
 }
 }
}

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */
 /* O(1) */ {
 /* O(1) */
 /* ??? */
 } else {
 /* O(1) */
 }
 }
 }
}

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

In summary…

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)
4. All calls to DFSOne

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)
4. All calls to DFSOne O(|E|)

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)
4. All calls to DFSOne O(|E|)

 O(|V| + |E|)

