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Announcements and Feedback

● PA2 testing target on Autolab is open
● Practice midterms on course website



Edge List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode

Edge

label: T
node: LinkedListNode

Storing the list nodes in the 
edges/vertices allows us to 
remove by reference in 𝚯(1) time



Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)



Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

← Involves checking every
edge in the graph



Adjacency List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]

Edge

label: T
node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Storing the list of incident edges in 
the vertex saves us the time of 
checking every edge in the graph.

The edge now stores additional nodes 
to ensure removal is still 𝚯(1) 



Adjacency List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.incidentEdges: O(deg(vertex))
● vertex.edgeTo: O(deg(vertex))
● Space Used: O(n) + O(m)



Adjacency List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.incidentEdges: O(deg(vertex))
● vertex.edgeTo: O(deg(vertex))
● Space Used: O(n) + O(m)

Now we already know what 
edges are incident without 
having to check them all



Adjacency Matrix

Destination

U V W

U - a -

V - - b

W c - -

O
rig

in



Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)



Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)

Just change a single entry of the matrix

Resize and copy the 
whole matrix

Check the row and 
column for that vertex

Check a single entry of the matrix

How does this relate to space of 
edge/adjacency lists?



Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)

Just change a single entry of the matrix

Resize and copy the 
whole matrix

Check the row and 
column for that vertex

Check a single entry of the matrix

How does this relate to space of
edge/adjacency lists? If the matrix is "dense" it's about the same



So…what do we do with our graphs?



Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?
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A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges
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A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Spanning Subgraph of G



A few more definitions

A graph is connected… 
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new 

vertex without breaking the property
● Any subset of G's edges that connect the 

subgraph are fine
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A few more definitions

A graph is connected… 
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new 
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A few more definitions

A graph is connected… 
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new 

vertex without breaking the property
● Any subset of G's edges that connect the 

subgraph are fine

Connected graph

Disconnected graph

2 connected 
components



A few more definitions

A free tree is an undirected graph T such that… 
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree
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A few more definitions

A spanning tree of a connected graph… 
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G
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A few more definitions

A spanning tree of a connected graph… 
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A Spanning Tree of G Another Spanning Tree of G



Now back to the question…Connectivity



How could we represent our maze as a graph?

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7



Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

O

X

How could we represent our maze as a graph?



Recall

Searching the maze with a stack
We try every path, one at a time, following it as far as we can
…then backtrack and try another
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Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Searching with a queue?
TBD…



Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component
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Primary Goals

● Visit every vertex in graph G = (V,E)
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Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|)



Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component



Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component



Depth-First Search
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DFS

object VertexLabel extends Enumeration
  { val UNEXPLORED, VISITED = Value }

object EdgeLabel extends Enumeration
  { val UNEXPLORED, SPANNING, BACK = Value }

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value]) {
  for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
  for(e <- graph.edges)    { e.setLabel(EdgeLabel.UNEXPLORED) }
  for(v <- graph.vertices) { 
    if(v.label == VertexLabel.UNEXPLORED){ 
      DFSOne(graph, v)
    }
  }
} 



DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
  v.setLabel(VertexLabel.VISITED)

  for(e <- v.incident) { 
    if(e.label == EdgeLabel.UNEXPLORED){
      val w = e.getOpposite(v)
      if(w.label == VertexLabel.UNEXPLORED){
        e.setLabel(EdgeLabel.SPANNING)
        DFSOne(graph, w)
      } else {
        e.setLabel(EdgeLabel.BACK)
      }
    }
  }
}
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        e.setLabel(EdgeLabel.SPANNING)
        DFSOne(graph, w)
      } else {
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      }
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If the edge is unexplored, explore it



DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
  v.setLabel(VertexLabel.VISITED)

  for(e <- v.incident) { 
    if(e.label == EdgeLabel.UNEXPLORED){
      val w = e.getOpposite(v)
      if(w.label == VertexLabel.UNEXPLORED){
        e.setLabel(EdgeLabel.SPANNING)
        DFSOne(graph, w)
      } else {
        e.setLabel(EdgeLabel.BACK)
      }
    }
  }
}

If the edge is unexplored, explore it

If the other endpoint is unexplored, this is a 
spanning edge, explore that vertex



DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
  v.setLabel(VertexLabel.VISITED)

  for(e <- v.incident) { 
    if(e.label == EdgeLabel.UNEXPLORED){
      val w = e.getOpposite(v)
      if(w.label == VertexLabel.UNEXPLORED){
        e.setLabel(EdgeLabel.SPANNING)
        DFSOne(graph, w)
      } else {
        e.setLabel(EdgeLabel.BACK)
      }
    }
  }
}

If the edge is unexplored, explore it

If the other endpoint is unexplored, this is a 
spanning edge, explore that vertex

If the other endpoint is already explored, this is 
a back edge



Detailed Example
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Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack ( → edges to list)
DFS(G)
DFSOne(G,A) 

A

B

C

D
E
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DFS vs Mazes

The DFS algorithm is like our stack-based maze solver
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once

○ DFS will not necessarily find the shortest paths
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The DFS algorithm is like our stack-based maze solver
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once

○ DFS will not necessarily find the shortest paths



Depth-First Search Complexity

What's the complexity?



Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
  for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
  for(e <- graph.edges)    { e.setLabel(EdgeLabel.UNEXPLORED) }
  for(v <- graph.vertices) { 
    if(v.label == VertexLabel.UNEXPLORED){ 
      DFSOne(graph, v)
    }
  }
}  
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def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
  /* O(|V|) */
  /* O(|E|) */
  /* O(|V|) times */ {
    if(v.label == VertexLabel.UNEXPLORED){ 
      DFSOne(graph, v)
    }
  }
}  



Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
  /* O(|V|) */
  /* O(|E|) */
  /* O(|V|) times */ { 
    if(v.label == VertexLabel.UNEXPLORED){ 
      /* ??? */
    }
  }
}  



Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
  v.setLabel(VertexLabel.VISITED)
  for(e <- v.incident) { 
    if(e.label == EdgeLabel.UNEXPLORED){
      val w = e.getOpposite(v)
      if(w.label == VertexLabel.UNEXPLORED){
        e.setLabel(EdgeLabel.SPANNING)
        DFSOne(graph, w)
      } else {
        e.setLabel(EdgeLabel.BACK)
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    }
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}



Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
  /* O(1) */
  for(e <- v.incident) { 
    if(e.label == EdgeLabel.UNEXPLORED){
      val w = e.getOpposite(v)
      if(w.label == VertexLabel.UNEXPLORED){
        e.setLabel(EdgeLabel.SPANNING)
        DFSOne(graph, w)
      } else {
        e.setLabel(EdgeLabel.BACK)
      }
    }
  }
}



Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
  /* O(1) */
  /* O(deg(v)) times */ {
    if(e.label == EdgeLabel.UNEXPLORED){
      val w = e.getOpposite(v)
      if(w.label == VertexLabel.UNEXPLORED){
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      }
    }
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How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))
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Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)
4. All calls to DFSOne O(|E|)

   O(|V| + |E|)


