Announcements and Feedback

● PA2 testing target on Autolab is open
● Practice midterms on course website
Storing the list nodes in the edges/vertices allows us to remove by reference in $\Theta(1)$ time.
Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(m)$
- vertex.incidentEdges: $O(m)$
- vertex.edgeTo: $O(m)$
- Space Used: $O(n) + O(m)$
Edge List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(m)$
- vertex.incidentEdges: $O(m)$
- vertex.edgeTo: $O(m)$
- Space Used: $O(n) + O(m)$

Involves checking every edge in the graph
Storing the list of incident edges in the vertex saves us the time of checking every edge in the graph.

The edge now stores additional nodes to ensure removal is still $\Theta(1)$
Adjacency List Summary

- addEdge, addVertex: $O(1)$
- removeEdge: $O(1)$
- removeVertex: $O(\text{deg(vertex)})$
- vertex.incidentEdges: $O(\text{deg(vertex)})$
- vertex.edgeTo: $O(\text{deg(vertex)})$
- Space Used: $O(n) + O(m)$
Adjacency List Summary

- **addEdge, addVertex**: $O(1)$
- **removeEdge**: $O(1)$
- **removeVertex**: $O(\text{deg}(\text{vertex}))$
- **vertex.incidentEdges**: $O(\text{deg}(\text{vertex}))$
- **vertex.edgeTo**: $O(\text{deg}(\text{vertex}))$
- **Space Used**: $O(n) + O(m)$

Now we already know what edges are incident without having to check them all.
Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>-</td>
<td>a</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>-</td>
<td>b</td>
</tr>
<tr>
<td>W</td>
<td>c</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

![Graph Diagram](image)
Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex: $O(n^2)$
- vertex.incidentEdges: $O(n)$
- vertex.edgeTo: $O(1)$
- Space Used: $O(n^2)$
Adjacency Matrix Summary

- **addEdge, removeEdge**: $O(1)$
- **addVertex, removeVertex**: $O(n^2)$
- **vertex.incidentEdges**: $O(n)$
- **vertex.edgeTo**: $O(1)$
- **Space Used**: $O(n^2)$

How does this relate to space of edge/adjacency lists?
Adjacency Matrix Summary

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex: $O(n^2)$
- vertex.incidentEdges: $O(n)$
- vertex.edgeTo: $O(1)$
- Space Used: $O(n^2)$

How does this relate to space of edge/adjacency lists? If the matrix is "dense" it's about the same
So...what do we do with our graphs?
Connectivity Problems

Given graph G:
Connectivity Problems

Given graph G:

- Is vertex u adjacent to vertex v?
Connectivity Problems

Given graph G:

- Is vertex u adjacent to vertex v?
- Is vertex u connected to vertex v via some path?
Connectivity Problems

Given graph G:

- Is vertex u adjacent to vertex v?
- Is vertex u connected to vertex v via some path?
- Which vertices are connected to vertex v?
Connectivity Problems

Given graph G:

- Is vertex u adjacent to vertex v?
- Is vertex u connected to vertex v via some path?
- Which vertices are connected to vertex v?
- What is the shortest path from vertex u to vertex v?
A few more definitions

A **subgraph**, S, of a graph G is a graph where:

- S's vertices are a subset of G's vertices
- S's edges are a subset of G's edges
A few more definitions

A **subgraph**, S, of a graph G is a graph where:
- S's vertices are a subset of G's vertices
- S's edges are a subset of G's edges

A **spanning subgraph** of G...
- Is a subgraph of G
- Contains all of G's vertices
A **subgraph, S**, of a graph \(G \) is a graph where:
- \(S \)'s vertices are a subset of \(G \)'s vertices
- \(S \)'s edges are a subset of \(G \)'s edges

A **spanning subgraph** of \(G \)... Is a subgraph of \(G \)
- Contains all of \(G \)'s vertices
A **subgraph**, S, of a graph G is a graph where:
- S's vertices are a subset of G's vertices
- S's edges are a subset of G's edges

A **spanning subgraph** of G...
- Is a subgraph of G
- Contains all of G's vertices
A graph is **connected**…

If there is a path between every pair of vertices
A graph is \textbf{connected}...
If there is a path between every pair of vertices
A few more definitions

A graph is **connected**...

- If there is a path between every pair of vertices
A few more definitions

A graph is **connected**...
If there is a path between every pair of vertices

A **connected component** of G...
Is a maximal connected subgraph of G
- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine
A graph is **connected**...
If there is a path between every pair of vertices

A **connected component** of G...
Is a maximal connected subgraph of G
- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine
A free tree is an undirected graph T such that...
 There is exactly one simple path between any two nodes
 - T is connected
 - T has no cycles
A **free tree** is an undirected graph T such that...
- There is exactly one simple path between any two nodes
 - T is connected
 - T has no cycles

A **rooted tree** is a directed graph T such that...
- One vertex of T is the **root**
- There is exactly one simple path from the root to every other vertex in the graph
A **free tree** is an undirected graph T such that...
- There is exactly one simple path between any two nodes
 - T is connected
 - T has no cycles

A **rooted tree** is a directed graph T such that...
- One vertex of T is the **root**
- There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) **forest** is a graph F such that...
- Every connected component is a tree
A **spanning tree** of a connected graph...
...Is a spanning subgraph that is a tree
...It is not unique unless the graph is a tree
A **spanning tree** of a connected graph...

...Is a spanning subgraph that is a tree

...It is not unique unless the graph is a tree
A **spanning tree** of a connected graph...

...is a spanning subgraph that is a tree

...it is not unique unless the graph is a tree
Now back to the question... Connectivity
How could we represent our maze as a graph?
How could we represent our maze as a graph?
Recall

Searching the maze with a stack

We try every path, one at a time, following it as far as we can
...then backtrack and try another
Recall

Searching the maze with a stack (Depth-First Search)

We try every path, one at a time, following it as far as we can
...then backtrack and try another
Recall

Searching the maze with a stack (Depth-First Search)
 We try every path, one at a time, following it as far as we can
 ...then backtrack and try another

Searching with a queue?
 TBD...
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - **Side Effect:** Compute connected components
 - **Side Effect:** Compute a path between all connected vertices
 - **Side Effect:** Determine if the graph is connected
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - **Side Effect:** Compute connected components
 - **Side Effect:** Compute a path between all connected vertices
 - **Side Effect:** Determine if the graph is connected
 - **Side Effect:** Identify cycles
Depth-First Search

Primary Goals

- Visit every vertex in graph $G = (V,E)$
- Construct a spanning tree for every connected component
 - **Side Effect:** Compute connected components
 - **Side Effect:** Compute a path between all connected vertices
 - **Side Effect:** Determine if the graph is connected
 - **Side Effect:** Identify cycles
- Complete in time $O(|V| + |E|)$
Depth-First Search

DFS

Input: Graph $G = (V,E)$
Output: Label every edge as:
 ● Spanning Edge: Part of the spanning tree
 ● Back Edge: Part of a cycle
Depth-First Search

DFS

Input: Graph $G = (V,E)$

Output: Label every edge as:
- **Spanning Edge:** Part of the spanning tree
- **Back Edge:** Part of a cycle

DFSOne

Input: Graph $G = (V,E)$, start vertex $v \in V$

Output: Label every edge in v's connected component
Depth-First Search
DFS

object VertexLabel extends Enumeration
{ val UNEXPLORED, VISITED = Value }

object EdgeLabel extends Enumeration
{ val UNEXPLORED, SPANNING, BACK = Value }

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value]) {
 for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}
def DFSOne(graph: Graph[..., #Vertex], v: Graph[..., #Vertex]) {
 v.setLabel(VertexLabel.VISITED)
 for (e <- v.incident) {
 if (e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if (w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...].#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 } else {
 }
 }
}

If the edge is unexplored, explore it
DFSOne

def DFSOne(graph: Graph[...], v: Graph[...]'#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for (e <- v.incident) {
 if (e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if (w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

If the edge is unexplored, explore it
If the other endpoint is unexplored, this is a spanning edge, explore that vertex
def DFSOne(graph: Graph[..., #Vertex], v: Graph[...]) {
 v.setLabel(VertexLabel.VISITED)

 for (e <- v.incident) {
 if (e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if (w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 } else {
 If the other endpoint is already explored, this is a back edge
 }
 }
}
Detailed Example

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- Call Stack
- BACK

Call Stack → edges to list
Detailed Example

Visited: A, B, C, D, E

UNEXPLORED

Call Stack:
DFS(G)
(edges to list)
Detailed Example

Call Stack
DFS(G)
DFSOne(G, A)

(edges to list)
Detailed Example

Call Stack
DFS(G)
DFSOne(G, A)

(→ edges to list)
(→ B, C, D)
Detailed Example

Call Stack
DFS(G) (→ edges to list)
DFSOne(G, A) (→ B, C, D)
Detailed Example

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
 - Call Stack
 - DFS(G)
 - DFSOne(G, A) (→ B, C, D)
 - DFSOne(G, B) (→ A, C)
- BACK

Diagram:

- Nodes: A, B, C, D, E
- Edges: A → B, B → D, D → C, C → A

Call Stack:
- DFS(G)
 - DFSOne(G, A) (→ B, C, D)
 - DFSOne(G, B) (→ A, C)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack

DFS(G)

DFSOne(G, A) (→ B, C, D)

DFSOne(G, B) (→ A, C)

(edges to list)
Detailed Example

Call Stack
- DFS(G)
- DFSOne(G, A) (→ B, C, D)
- DFSOne(G, B) (→ A, C)
- DFSOne(G, C) (→ B, A, D, E)
Detailed Example

Call Stack
DFS(G)
DFSOne(G, A) (\to B, C, D)
DFSOne(G, B) (\to A, C)
DFSOne(G, C) (\to B, A, D, E)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack

DFS(G)

DFSOne(G, A) (→ B, C, D)

DFSOne(G, B) (→ A, C)

DFSOne(G, C) (→ B, A, D, E)

A

B

C

D

E
Detailed Example

Call Stack
- DFS(G)
- DFSOne(G, A) → B, C, D
- DFSOne(G, B) → A, C
- DFSOne(G, C) → B, A, D, E
- DFSOne(G, D) → A, C

Graph:
- Nodes: A, B, C, D, E
- Edges: A-B, B-C, C-D, D-E
Detailed Example

Call Stack

DFS(G)
DFSOne(G, A) (→ B, C, D)
DFSOne(G, B) (→ A, C)
DFSOne(G, C) (→ B, A, D, E)
DFSOne(G, D) (→ A, C)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack

DFS(G)
DFSOne(G, A) (→ B, C, D)
DFSOne(G, B) (→ A, C)
DFSOne(G, C) (→ B, A, D, E)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

Call Stack

DFS(G)

DFSOne(G, A) (→ B, C, D)

DFSOne(G, B) (→ A, C)

DFSOne(G, C) (→ B, A, D, E)
Detailed Example

Call Stack
DFS(G)
DFSOne(G, A) (→ B, C, D)
DFSOne(G, B) (→ A, C)
DFSOne(G, C) (→ B, A, D, E)
DFSOne(G, E) (→ A, C)
Detailed Example

- Call Stack
 - DFS(G)
 - DFSOne(G, A) (→ B, C, D)
 - DFSOne(G, B) (→ A, C)
 - DFSOne(G, C) (→ B, A, D, E)
 - DFSOne(G, E) (→ A, C)

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- BACK
Detailed Example

Call Stack

- DFS(G)
- DFSOne(G, A) → B, C, D
- DFSOne(G, B) → A, C
- DFSOne(G, C) → B, A, D, E

UNEXPLORED
VISITED
UNEXPLORED
SPANNING
BACK
Detailed Example

Call Stack

DFS(G)

DFSOne(G, A) (→ B, C, D)

DFSOne(G, B) (→ A, C)
Detailed Example

Call Stack
DFS(G) (→ edges to list)
DFSOne(G, A) (→ B, C, D)
Detailed Example

Call Stack
DFS(G)
DFSOne(G,B)

(→ edges to list)
Detailed Example

Call Stack
DFS(G)
DFSOne(G, C)

(→ edges to list)
Detailed Example

Call Stack
DFS(G)
DFSOne(G, D)

(→ edges to list)
Detailed Example

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack
DFS(G)
DFSOne(G, E)

(→ edges to list)
Detailed Example

Call Stack: DFS(G) → edges to list

UNEXPLORED
- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- BACK
Detailed Example

- UNEXPLORED
- VISITED
- UNEXPLORED
- SPANNING
- CALL STACK
- BACK

Call Stack: (edges to list)
DFS vs Mazes

The DFS algorithm is like our stack-based maze solver

- Mark each grid square with **VISITED** as we explore it
- Mark each path with **SPANNING** or **BACK**
- Only visit each vertex once
DFS vs Mazes

The DFS algorithm is like our stack-based maze solver

- Mark each grid square with **VISITED** as we explore it
- Mark each path with **SPANNING** or **BACK**
- Only visit each vertex once
 - DFS will not necessarily find the shortest paths
What's the complexity?
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 for (v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
 for (e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for (v <- graph.vertices) {
 if (v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
/* O(|V|) */
for(e <- graph.edges) { esetLabel(EdgeLabel.UNEXPLORED) }
for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
}
}
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 /* O(|V|) times */
 {
 if(v.label == VertexLabel.UNEXPLORERD){
 DFSOne(graph, v)
 }
 }
}
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 /* O(|V|) times */ {
 if(v.label == VertexLabel.UNEXPLORED){
 /* ??? */
 }
 }
}
def DFSOne(graph: Graph[...], v: Graph[...].#Vertex) {
 v.setLabel(VertexLabel.VISITED)
 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

Complexity
def DFSOne(graph: Graph[...], v: Graph[...].#Vertex) {
 /* O(1) */
 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}
Complexity

def DFSOne(graph: Graph[...], v: Graph[...].Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 if (e.label == EdgeLabel.UNEXPLORED) {
 val w = e.getOpposite(v)
 if (w.label == VertexLabel.UNEXPLORED) {
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}
def DFSOne(graph: Graph[..., #Vertex], v: Graph[...]) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */
 DFSOne(graph, w)
 } else {
 /* O(1) */
 }
 } /* O(1) */
 } /* O(1) */
 } /* O(1) */
}
def DFSOne(graph: Graph[...], v: Graph[...]?Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */
 /* O(1) */ {
 /* O(1) */
 /* ??? */
 } else {
 /* O(1) */
 }
 }
 }
}
Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it
How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once.

If v.label == VISITED, both DFS, and DFSOne skip it.

$O(|V|)$ calls to DFSOne
Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne *excluding* the recursive calls?
def DFSOne(graph: Graph[...], v: Graph[...].#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */ {
 /* O(1) */
 /* ??? */
 } else {
 /* O(1) */
 }
 } else {
 /* O(1) */
 }
 } else {
 /* O(1) */
 }
 }
 }
}
How many times do we call **DFSOne** on each vertex?

Observation: **DFSOne** is called on each vertex at most once

If `v.label == VISITED`, both DFS, and **DFSOne** skip it

\[O(|V|) \text{ calls to DFSOne} \]

*What's the runtime of **DFSOne** excluding the recursive calls?*
Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once.

If v.label == VISITED, both DFS, and DFSOne skip it.

$O(|V|)$ calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? $O(\text{deg}(v))$
Depth-First Search Complexity

What is the sum over all calls to \texttt{DFS\text{One}}?
Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$\sum_{v \in V} O(deg(v))$$
What is the sum over all calls to \texttt{DFSOne}?

\[
\sum_{v \in V} O(\text{deg}(v))
\]

\[
= O(\sum_{v \in V} \text{deg}(v))
\]
Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$\sum_{v \in V} O(deg(v))$$

$$= O\left(\sum_{v \in V} deg(v)\right)$$

$$= O(2|E|)$$
Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$\sum_{v \in V} O(\text{deg}(v))$$

$$= O\left(\sum_{v \in V} \text{deg}(v)\right)$$

$$= O(2|E|)$$

$$= O(|E|)$$
In summary...
Depth-First Search Complexity

In summary...

1. Mark the vertices **UNVISITED**
In summary...

1. Mark the vertices UNVISITED $O(|V|)$
Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED \(O(|V|) \)
2. Mark the edges UNVISITED
Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED \(O(|V|) \)
2. Mark the edges UNVISITED \(O(|E|) \)
In summary...

1. Mark the vertices **UNVISITED** $O(|V|)$
2. Mark the edges **UNVISITED** $O(|E|)$
3. **DFS** vertex loop
In summary...

1. Mark the vertices UNVISITED \(O(|V|) \)
2. Mark the edges UNVISITED \(O(|E|) \)
3. DFS vertex loop \(O(|V|) \)
Depth-First Search Complexity

In summary...

1. Mark the vertices \texttt{UNVISITED} \(O(|V|) \)
2. Mark the edges \texttt{UNVISITED} \(O(|E|) \)
3. \texttt{DFS} vertex loop \(O(|V|) \)
4. All calls to \texttt{DFSOne}
Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED $O(|V|)$
2. Mark the edges UNVISITED $O(|E|)$
3. DFS vertex loop $O(|V|)$
4. All calls to DFSOne $O(|E|)$
Depth-First Search Complexity

In summary...

1. Mark the vertices **UNVISITED** $O(|V|)$
2. Mark the edges **UNVISITED** $O(|E|)$
3. **DFS** vertex loop $O(|V|)$
4. All calls to **DFSOne** $O(|E|)$

$O(|V| + |E|)$