CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Announcements and Feedback

- PA2 testing target on Autolab is open
- Practice midterms on course website

Edge List Summary

Edge List Summary

- addEdge, addVertex: $\mathbf{O (1)}$
- removeEdge: $0(1)$
- removeVertex: O (m)
- vertex.incidentEdges: $\mathbf{O}(\mathrm{m})$
- vertex.edgeTo: $0(m)$
- Space Used: $O(n)+O(m)$

Edge List Summary

- addEdge, addVertex: $\mathbf{O (1)}$
- removeEdge: $0(1)$
- removeVertex: $O(m)$
- vertex.incidentEdges: $O(m) \leftarrow \quad$ Involves checking every
- vertex. edgeTo: $O(m)$ edge in the graph
- Space Used: O(n) + O(m)

Adjacency List Summary

Storing the list of incident edges in the vertex saves us the time of checking every edge in the graph.

The edge now stores additional nodes to ensure removal is still $\boldsymbol{\Theta}(1)$

```
Vertex
label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]
```


Edge

```
label: T
```

node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Adjacency List Summary

- addEdge, addVertex: $\mathbf{O}(1)$
- removeEdge: $O(1)$
- removeVertex: O (deg(vertex))
- vertex.incidentEdges: O (deg(vertex))
- vertex.edgeTo: O (deg(vertex))
- Space Used: $O(n)+O(m)$

Adjacency List Summary

- addEdge, addVertex: $\mathbf{O}(1)$
- removeEdge: $0(1)$
- removeVertex: O(deg(vertex))
- vertex.incidentEdges: O (deg(vertex))
- vertex.edgeTo: O (deg(vertex))
- Space Used: O(n) + O(m)

Now we already know what edges are incident without having to check them all

Adjacency Matrix

Adjacency Matrix Summary

- addEdge, removeEdge: $\mathbf{O (1)}$
- addVertex, removeVertex: $O\left(n^{2}\right)$
- vertex.incidentEdges: $O(n)$
- vertex.edgeTo: $O(1)$
- Space Used: $O\left(n^{2}\right)$

Adjacency Matrix Summary

Just change a single entry of the matrix

- addEdge, removeEdge: $O(1)$ - addVertex, removeVertex: $O\left(n^{2}\right)$

Resize and copy the whole matrix

- vertex.incidentEdges: $O(n)$

Check the row and

- vertex.edgeTo: O(1)
- Space Used: $0\left(n^{2}\right)$ column for that vertex

How does this relate to space of edge/adjacency lists?

Adjacency Matrix Summary

Just change a single entry of the matrix

- addEdge, removeEdge: $O(1)$
- addVertex, removeVertex: $O\left(n^{2}\right)$

Resize and copy the whole matrix

- vertex.incidentEdges: $O(n)$
- vertex.edgeTo: O(1)
- Space Used: $0\left(n^{2}\right)$ column for that vertex

Check a single entry of the matrix
How does this relate to space of
edge/adjacency lists? If the matrix is "dense" it's about the same

So...what do we do with our graphs?

Connectivity Problems

Given graph \mathbf{G} :

Connectivity Problems

Given graph \mathbf{G} :

- Is vertex \boldsymbol{u} adjacent to vertex \boldsymbol{v} ?

Connectivity Problems

Given graph G:

- Is vertex \boldsymbol{u} adjacent to vertex \boldsymbol{v} ?
- Is vertex \boldsymbol{u} connected to vertex \boldsymbol{v} via some path?

Connectivity Problems

Given graph G:

- Is vertex \boldsymbol{u} adjacent to vertex \boldsymbol{v} ?
- Is vertex \boldsymbol{u} connected to vertex \boldsymbol{v} via some path?
- Which vertices are connected to vertex \boldsymbol{v} ?

Connectivity Problems

Given graph G:

- Is vertex \boldsymbol{u} adjacent to vertex \boldsymbol{v} ?
- Is vertex \boldsymbol{u} connected to vertex \boldsymbol{v} via some path?
- Which vertices are connected to vertex \boldsymbol{v} ?
- What is the shortest path from vertex \boldsymbol{u} to vertex \boldsymbol{v} ?

A few more definitions

A subgraph, \boldsymbol{S}, of a graph \boldsymbol{G} is a graph where: S's vertices are a subset of G's vertices S's edges are a subset of G's edges

A few more definitions

A subgraph, \boldsymbol{S}, of a graph \boldsymbol{G} is a graph where: S's vertices are a subset of G's vertices S's edges are a subset of G's edges

A spanning subgraph of G...
Is a subgraph of G
Contains all of \mathbf{G} 's vertices

A few more definitions

A subgraph, \boldsymbol{S}, of a graph \boldsymbol{G} is a graph where:
S 's vertices are a subset of G's vertices
S's edges are a subset of G's edges
Subgraph of G
A spanning subgraph of G...
Is a subgraph of \mathbf{G}
Contains all of G's vertices

A few more definitions

A subgraph, \boldsymbol{S}, of a graph \boldsymbol{G} is a graph where: S 's vertices are a subset of G's vertices S's edges are a subset of G's edges

A spanning subgraph of G...
Is a subgraph of \mathbf{G}
Contains all of \mathbf{G} 's vertices

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

Disconnected graph

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

A connected component of G...

Is a maximal connected subgraph of G

- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine

Connected graph

Disconnected graph

A few more definitions

A graph is connected...
If there is a path between every pair of vertices

A connected component of G...

Is a maximal connected subgraph of G

- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine

A few more definitions

A free tree is an undirected graph \boldsymbol{T} such that...
There is exactly one simple path between any two nodes

- \boldsymbol{T} is connected
- \quad Thas no cycles

A few more definitions

A free tree is an undirected graph \boldsymbol{T} such that...
There is exactly one simple path between any two nodes

- \boldsymbol{T} is connected
- \quad Thas no cycles

A rooted tree is a directed graph T such that...
One vertex of \boldsymbol{T} is the root
There is exactly one simple path from the root to every other vertex in the graph

A few more definitions

A free tree is an undirected graph \boldsymbol{T} such that...
There is exactly one simple path between any two nodes

- \boldsymbol{T} is connected
- $\quad \mathbf{T}$ has no cycles

A rooted tree is a directed graph T such that...
One vertex of \boldsymbol{T} is the root
There is exactly one simple path from the root to every other vertex in the graph
A (free/rooted) forest is a graph F such that...
Every connected component is a tree

A few more definitions

A spanning tree of a connected graph...
...Is a spanning subgraph that is a tree
...It is not unique unless the graph is a tree

A few more definitions

A spanning tree of a connected graph...
...Is a spanning subgraph that is a tree
...It is not unique unless the graph is a tree

A Spanning Tree of \mathbf{G}

A few more definitions

A spanning tree of a connected graph...
...Is a spanning subgraph that is a tree
...It is not unique unless the graph is a tree

A Spanning Tree of \mathbf{G}

Another Spanning Tree of \mathbf{G}

Now back to the question...Connectivity

Back to Mazes

How could we represent our maze as a graph?

Back to Mazes

How could we represent our maze as a graph?

Recall

Searching the maze with a stack

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can ...then backtrack and try another

Searching with a queue? TBD...

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components
- Side Effect: Compute a path between all connected vertices

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components
- Side Effect: Compute a path between all connected vertices
- Side Effect: Determine if the graph is connected

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components
- Side Effect: Compute a path between all connected vertices
- Side Effect: Determine if the graph is connected
- Side Effect: Identify cycles

Depth-First Search

Primary Goals

- Visit every vertex in graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Construct a spanning tree for every connected component
- Side Effect: Compute connected components
- Side Effect: Compute a path between all connected vertices
- Side Effect: Determine if the graph is connected
- Side Effect: Identify cycles
- Complete in time $\mathbf{O}(|\mathbf{V}|+|E|)$

Depth-First Search

DFS

Input: Graph G = (V,E)
Output: Label every edge as:

- Spanning Edge: Part of the spanning tree
- Back Edge: Part of a cycle

Depth-First Search

DFS

Input: Graph G = (V,E)
Output: Label every edge as:

- Spanning Edge: Part of the spanning tree
- Back Edge: Part of a cycle

DFSOne

Input: Graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, start vertex $\boldsymbol{v} \in \mathbf{V}$
Output: Label every edge in v 's connected component

Depth-First Search

DFS

```
object VertexLabel extends Enumeration
    { val UNEXPLORED, VISIMFD = Value }
object EdgeLabel extends Enumeration
    { val UNEXPLORED, SPANNING, BACK = Value }
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value]) {
    for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORFD) }
    for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
    for(v <- graph.vertices) {
        if(v.label == VertexLabel.UNEXPLORED) {
            DFSOne (graph, v)
        }
    }
}
```


DFSOne

```
def DFSOne(graph: Graph[..], v: Graph[...] #Vertex) {
    v.setLabel (VertexLabel.VISITED)
    for(e <- v.incident) {
        if(e.label == EdgeLabel.UNEXPLORED) {
            val w = e.getOpposite(v)
            if(w.label == VertexLabel.UNEXPLORED) {
            e. setLabel (EdgeLabel . SPANNING)
            DFSOne (graph , w)
            } else {
                e.setLabel (EdgeLabel . BACK)
            }
        }
    }
}
```


DFSOne

```
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
    v.setLabel(VertexLabel.VISITED)
    for(e <- v.incident) {
        if(e.label == EdgeLabel.UNEXPLORFD) { If the edge is unexplored, explore it
            val w = e.getOpposite(v)
            if(w.label == VertexLabel.UNEXPLORED) {
            e.setLabel (EdgeLabel. SPANNING)
            DFSOne (graph, w)
            } else {
                e. setLabel (EdgeLabel . BA⿻ACK)
            }
        }
    }
}
```


DFSOne

```
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
    v.setLabel (VertexLabel.VISITFD)
    for(e <- v.incident) {
        if(e.label == EdgeLabel.UNEXPLORFD) { If the edge is unexplored, explore it
            val w = e.getOpposite(v)
            if(w.label == VertexLabel.UNEXPLORFD) {
                e.setLabel (EdgeLabel.SPANNING)
                DFSOne (graph, w)
            } else {
                e. setLabel (EdgeLabel . BA⿻ACK)
            }
        }
    }
}
```


DFSOne

```
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
    v.setLabel(VertexLabel.VISITED)
    for(e <- v.incident) {
        if(e.label == EdgeLabel.UNEXPLORFD) { If the edge is unexplored, explore it
            val w = e.getOpposite(v)
            if(w.label == VertexLabel.UNEXPLORFD) {
                e.setLabel (EdgeLabel. SPANNING)
                DFSOne (graph, w)
            } else {
                e. setLabel (EdgeLabel . BA⿻ACK)
            }
        }
                            If the other endpoint is already explored, this is
                                a back edge
    }
}
```


Detailed Example

Detailed Example

Detailed Example

Detailed Example

UNEXPLORED

```
UNEXPLORED
```

SPANNING

Call Stack
$(\rightarrow$ edges to list)
 DFS(G) DFSOne $(G, A) \quad(\rightarrow B, C, D)$

Detailed Example

UNEXPLORED
UNEXPLORED
SPANNING
Call Stack$(\rightarrow$ edges to list)C
DFS(G)

$$
\text { DFSOne }(G, A) \quad(\rightarrow B, C, D)
$$

Detailed Example

Detailed Example

UNEXPLORED
SPANNING

Call Stack DFS(G)
DFSOne $(G, A) \quad(\rightarrow B, C, D)$

Detailed Example

UNEXPLORED
SPANNING

Call Stack DFS(G)
DFSOne (G, B)

Detailed Example

UNEXPLORED
SPANNING

Call Stack DFS(G)
DFSOne (G, C)

Detailed Example

UNEXPLORED
SPANNING

Call Stack DFS(G)
DFSOne(G, D)

Detailed Example

UNEXPLORED
SPANNING

Call Stack DFS(G)
DFSOne (G, E)

Detailed Example

Detailed Example

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver

- Mark each grid square with VISITED as we explore it
- Mark each path with SPANNING or BACK
- Only visit each vertex once

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver

- Mark each grid square with VISITED as we explore it
- Mark each path with SPANNING or BACK
- Only visit each vertex once
- DFS will not necessarily find the shortest paths

Depth-First Search Complexity

What's the complexity?

Complexity

```
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
    for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
    for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
    for(v <- graph.vertices) {
        if(v.label == VertexLabel.UNEXPLORED) {
            DFSOne(graph, v)
        }
    }
}
```


Complexity

```
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
    /* O(|V|) */
    for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
    for(v <- graph.vertices) {
        if(v.label == VertexLabel.UNEXPLORED) {
            DFSOne(graph, v)
        }
    }
}
```


Complexity

```
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
    /* O(|V|) */
    /* O(|E|) */
    for(v <- graph.vertices) {
        if(v.label == VertexLabel.UNEXPLORED) {
            DFSOne(graph, v)
        }
    }
}
```


Complexity

```
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
    /* O(|V|) */
    /* O(|E|) */
    /* O(|V|) times */ {
        if(v.label == VertexLabel.UNEXPLORED) {
        DFSOne(graph, v)
        }
    }
}
```


Complexity

```
def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
    /* O(|V|) */
    /* O(|E|) */
    /* O(|V|) times */ {
        if(v.label == VertexLabel.UNEXPLORED) {
        /* ??? */
        }
    }
}
```


Complexity

```
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
    v.setLabel (VertexLabel.VISITFD)
    for(e <- v.incident) {
        if(e.label == EdgeLabel.UNEXPLORED) {
            val w = e.getOpposite(v)
            if(w.label == VertexLabel.UNEXPLORED) {
                e.setLabel (EdgeLabel. SPANNING)
            DFSOne(graph, w)
            } else {
                e.setLabel (EdgeLabel . BACK)
            }
        }
    }
}
```


Complexity

```
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
    /* O(1) */
    for(e <- v.incident) {
        if(e.label == EdgeLabel.UNEXPLORED) {
            val w = e.getOpposite(v)
            if(w.label == VertexLabel.UNEXPLORED) {
                e.setLabel (EdgeLabel. SPANNING)
                DFSOne (graph, w)
            } else {
                e.setLabel (EdgeLabel . BACK)
            }
        }
    }
}
```


Complexity

```
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
    /* O(1) */
    /* O(deg(v)) times */ {
        if(e.label == EdgeLabel.UNEXPLORED) {
        val w = e.getOpposite(v)
        if(w.label == VertexLabel.UNEXPLORED) {
            e.setLabel (EdgeLabel. SPANNING)
            DFSOne (graph, w)
            } else {
                e. setLabel (EdgeLabel . BACK)
            }
        }
    }
}
```


Complexity

```
def DFSOne(graph: Graph[..], v: Graph[...]#Vertex) {
    /* O(1) */
    /* O(deg(v)) times */ {
        /* O(1) */ {
            /* O(1) */
            /* O(1) */ {
                /* O(1) */
                DFSOne (graph, w)
            } else {
                /* O(1) */
            }
        }
    }
}
```


Complexity

```
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
    /* O(1) */
    /* O(deg(v)) times */ {
        /* O(1) */ {
            /* O(1) */
            /* O(1) */ {
                /* O(1) */
                /* ??? */
            } else {
                /* O(1) */
            }
        }
    }
}
```


Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once
If v.label == VISITED, both DFS, and DFSOne skip it

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once
If v.label == VISITED, both DFS, and DFSOne skip it $O(|V|)$ calls to DFSOne

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once
If v.label == VISITED, both DFS, and DFSOne skip it $O(|V|)$ calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

Complexity

```
def DFSOne(graph: Graph[...], v: Graph[...]#Vertex) {
    /* O(1) */
    /* O(deg(v)) times */ {
        /* O(1) */ {
            /* O(1) */
            /* O(1) */ {
                /* O(1) */
                /* ??? */
            } else {
                /* O(1) */
            }
        }
    }
}
```


Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once
If v.label == VISITED, both DFS, and DFSOne skip it $O(|V|)$ calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?
Observation: DFSOne is called on each vertex at most once

$$
\begin{aligned}
\text { If } v . \text { label }== & \text { VISITED, both DFS, and DFSOne skip it } \\
& O(|V|) \text { calls to DFSOne }
\end{aligned}
$$

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$
\sum_{v \in V} O(\operatorname{deg}(v))
$$

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$
\begin{aligned}
& \sum_{v \in V} O(\operatorname{deg}(v)) \\
& =O\left(\sum_{v \in V} \operatorname{deg}(v)\right)
\end{aligned}
$$

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$
\begin{aligned}
& \sum_{v \in V} O(\operatorname{deg}(v)) \\
& =O\left(\sum_{v \in V} \operatorname{deg}(v)\right) \\
& =O(2|E|)
\end{aligned}
$$

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

$$
\begin{aligned}
& \sum_{v \in V} O(\operatorname{deg}(v)) \\
& =O\left(\sum_{v \in V} \operatorname{deg}(v)\right) \\
& =O(2|E|) \\
& =O(|E|)
\end{aligned}
$$

Depth-First Search Complexity

In summary...

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED $\mathbf{O}(|V|)$

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED $\mathbf{O}(|\mathbf{V}|)$
2. Mark the edges UNVISITED

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

O(|V|)
2. Mark the edges UNVISITED
$0(|E|)$

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED $O(|E|)$
3. DFS vertex loop

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED $O(|E|)$
3. DFS vertex loop O(|V|)

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

$$
O(|V|)
$$

2. Mark the edges UNVISITED $O(|E|)$
3. DFS vertex loop O(|V|)
4. All calls to DFSOne

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED

$$
O(|V|)
$$

2. Mark the edges UNVISITED
$0(|E|)$
3. DFS vertex loop
$0(|V|)$
4. All calls to DFSOne

$$
O(|E|)
$$

Depth-First Search Complexity

In summary...

1. Mark the vertices UNVISITED
2. Mark the edges UNVISITED
3. DFS vertex loop
4. All calls to DFSOne

$$
\begin{gathered}
O(|V|) \\
O(|E|) \\
O(|V|) \\
O(|E|) \\
\hline O(|V|+|E|)
\end{gathered}
$$

