
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Midterm Review

mailto:epmikida@buffalo.edu

Midterm Procedure

● Exam is during normal class time. Same time, same place.
● Seating is assigned randomly

○ Wait outside the room until instructed to enter
○ Immediately place all bags/electronics at the front of the room

● At your seat you should have:
○ Writing utensil
○ UB ID card
○ One 8.5x11 cheatsheet (front and back) if desired
○ Summation/Log rules will be provided

Content
Overview

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Seq Array

Amortized Runtime Seq, Buffer ArrayBuffer

Seq Linked Lists

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Stack, Queue

Graphs EdgeList,
AdjacencyList
Adjacency Matrix

Analysis Tools and
Techniques

Limit Tests

Case 1: (f grows faster; g is better)

Case 2: (g grows faster; f is better)

Case 3: (f and g “behave” the same)

5

Recap of Runtime Complexity

Big-𝚯 — Tight Bound
● Growth functions are in the same complexity class
● If f(n) ∈ 𝚯(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n)

steps.

Big-O — Upper Bound
● Growth functions in the same or smaller complexity class.
● If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it

may be even faster).

Big-𝛀 — Lower Bound
● Growth functions in the same or bigger complexity class
● If f(n) ∈ 𝛀(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n)

steps (but it may be even slower)

Common Runtimes (in order of complexity)

Constant Time: 𝚯(1)

Logarithmic Time: 𝚯(log(n))

Linear Time: 𝚯(n)

Quadratic Time: 𝚯(n2)

Polynomial Time: 𝚯(nk) for some k > 0

Exponential Time: 𝚯(cn) (for some c ≥ 1)

Formal Definitions

f(n) ∈ O(g(n)) iff exists some constants c, n0 s.t.

f(n) ≤ c * g(n) for all n > n0

f(n) ∈ 𝛀(g(n)) iff exists some constants c, n0 s.t.

f(n) ≥ c * g(n) for all n > n0

f(n) ∈ 𝚯(g(n)) iff f(n) ∈ O(g(n)) and f(n) ∈ 𝛀(g(n))

Amortized Runtime

If n calls to a function take O(T(n))...

We say the Amortized Runtime is O(T(n) / n)

The amortized runtime of append on an ArrayBuffer is: O(n/n) = O(1)
The unqualified runtime of append on an ArrayBuffer is: O(n)

What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average Bound
…we don't have any guarantees

← Unqualified runtime

Inductive Proofs

Solve for T(n)

Approach:

1. Generate a hypothesis
2. Prove your hypothesis for the base case

3. Prove the hypothesis for the recursive case inductively

ADTs and Data Structures

Abstract Data Types (ADTs)

● The specification of what a data structure can do

ADT

Read everything

Read "nth" element

Update "nth" element

Abstract Data Types (ADTs)

● The specification of what a data structure can do

ADT

Read everything

Read "nth" element

Update "nth" element

What's in the box? …we
don't know, and in some
sense…we don't care

Usage is governed by what we can do, not how it is done

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

Think about the Linked List we are
implementing for PA2.

The internal structure and the mental
model of our sequence are very

different.

Seq Summary

Operation Array[T] ArrayBuffer[T] List[T] (index) List[T] (ref)

apply(i) 𝚯(1) 𝚯(1) 𝚯(i), O(n) 𝚯(1)

update(i, val) 𝚯(1) 𝚯(1) 𝚯(i), O(n) 𝚯(1)

insert(i, val) 𝚯(n) O(n) 𝚯(i), O(n) 𝚯(1)

remove(i, val) 𝚯(n) 𝚯(n-i), O(n) 𝚯(i), O(n) 𝚯(1)

append(i) 𝚯(n) O(n), Amortized 𝚯(1) 𝚯(i), O(n) 𝚯(1)

Queues vs Stacks (ADTs)

Queue First in, First Out (FIFO)

Stacks Last in, First Out (LIFO / FILO)

Recap

Stacks: Last In First Out (LIFO)
● Push (put item on top of the stack) 𝚯(1) (or amortized O(1))
● Pop (take item off top of stack) 𝚯(1)
● Top (peek at top of stack) 𝚯(1)

Queues: First in First Out (FIFO)
● Enqueue (put item on the end of the queue) 𝚯(1) (or amortized O(1))
● Dequeue (take item off the front of the queue) 𝚯(1)
● Head (peek at the item in the front of the queue) 𝚯(1)

A (Directed) Graph ADT

Two type parameters (Graph[V,E])
V: The vertex label type
E: The edge label type

Vertices
…are elements (like Linked List Nodes)
…store a value of type V

Edges
…are also elements
…store a value of type E

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

Adjacency List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.incidentEdges: O(deg(vertex))
● vertex.edgeTo: O(deg(vertex))
● Space Used: O(n) + O(m)

Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)

DFS (LIFO order…Stacks) BFS (FIFO order…Queues)

DFS vs BFS

✓ ✓

✓

✓

✓

A: 0

B: 1

C:2

D:1
E:1

✓ ✓

✓

✓

✓

A

B

C

D
E

BACK Edge(v,w): w is an ancestor of v in
the discovery tree

CROSS Edge(v,w): w is at the same or next level
as v

DFS Traversal vs BFS Traversal

Application DFS BFS

Spanning Trees ✓ ✓

Connected Components ✓ ✓

Paths/Connectivity ✓ ✓

Cycles ✓ ✓

Shortest Paths ✓

Articulation Points ✓

