CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Midterm Review

Midterm Procedure

- Exam is during normal class time. Same time, same place.
- Seating is assigned randomly
 - Wait outside the room until instructed to enter
 - Immediately place all bags/electronics at the front of the room
- At your seat you should have:
 - Writing utensil
 - UB ID card
 - One 8.5x11 cheatsheet (front and back) if desired
 - Summation/Log rules will be provided

Content Overview

Analysis Tools/Techniques	ADTs	Data Structures
Asymptotic Analysis, (Unqualified) Runtime Bounds		
	Seq	Array
Amortized Runtime	Seq, Buffer	ArrayBuffer
	Seq	Linked Lists
Recursive analysis, divide and conquer, Average/Expected Runtime		
	Stack, Queue	
	Graphs	EdgeList, AdjacencyList Adjacency Matrix

Analysis Tools and Techniques

Limit Tests

Case 1:
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$$

(f grows faster; g is better)

Case 2:
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

(g grows faster; f is better)

Case 3: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = some \ constant$

(f and g "behave" the same)

Recap of Runtime Complexity

Big-**O** – Tight Bound

- Growth functions are in the **same** complexity class
- If f(n) ∈ Θ(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n) steps.

Big-O – Upper Bound

- Growth functions in the **same or smaller** complexity class.
- If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it may be even faster).

Big - Ω – Lower Bound

- Growth functions in the **same or bigger** complexity class
- If f(n) ∈ Ω(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n) steps (but it may be even slower)

Common Runtimes (in order of complexity)

- Constant Time: $\Theta(1)$ Logarithmic Time: $\Theta(\log(n))$
- Linear Time: $\Theta(n)$
- Quadratic Time: $\Theta(n^2)$
- Polynomial Time: $\Theta(n^k)$ for some k > 0
- **Exponential Time:** $\Theta(c^n)$ (for some $c \ge 1$)

Formal Definitions

 $f(n) \in O(g(n))$ iff exists some constants c, n_0 s.t. $f(n) \le c * g(n)$ for all $n > n_0$

 $f(n) \in \Omega(g(n))$ iff exists some constants c, n_0 s.t.

 $f(n) \ge c * g(n)$ for all $n > n_0$

 $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

Amortized Runtime

If n calls to a function take O(T(n))...

We say the **<u>Amortized Runtime</u>** is O(T(n) / n)

The **amortized runtime** of **append** on an **ArrayBuffer** is: O(n/n) = O(1)The **unqualified runtime** of **append** on an **ArrayBuffer** is: O(n)

What guarantees do you get?

If f(n) is a Tight Bound

The algorithm always runs in *cf*(*n*) steps

If f(n) is a Worst-Case Bound

The algorithm always runs in at most cf(n)

← Unqualified runtime

If f(n) is an Amortized Worst-Case Bound n invocations of the algorithm **always** run in cnf(n) steps

If f(n) is an Average Bound

...we don't have any guarantees

Inductive Proofs

Solve for *T*(*n*)

Approach:

- 1. Generate a hypothesis
- 2. Prove your hypothesis for the base case
- 3. Prove the hypothesis for the recursive case *inductively*

ADTs and Data Structures

Abstract Data Types (ADTs)

• The specification of what a data structure can do

Abstract Data Types (ADTs)

The specification of what a data structure can do

What's in the box? ...we don't know, and in some sense...we don't care

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines **what** the data structure can do

Many data structures can implement the same ADT

Data Structure

The implementation of one (or more) ADTs

Defines **how** the different tasks are carried out

Different data structures will excel at different tasks

Abstract Data Type vs Data Structure

AD	T Data S	Data Structure		
The interface to	Think about the Linked List we are	ation of one (or		
Defines what the	implementing for PA2.) ADTs		
can	The internal structure and the mental	e different tasks		
Many data st	model of our sequence are very	ried out		
implement th	different.	uctures will excel		
	at different tasks			

at different tasks

Seq Summary

Operation	Array[T]	ArrayBuffer[T]	List[T] (index)	List[T] <i>(ref)</i>
apply(i)	Θ(1)	Θ(1)	Θ (i), O(n)	Θ(1)
update(i, val)	Θ(1)	Θ(1)	Θ (i), O(n)	Θ(1)
insert(i, val)	Θ(n)	O(n)	Θ (i), O(n)	Θ(1)
remove(i, val)	Θ(n)	Θ(n-i), O(n)	Θ (i), O(n)	Θ(1)
append(i)	Θ(n)	O(n), Amortized $\Theta(1)$	Θ (i), O(n)	Θ(1)

Queues vs Stacks (ADTs)

Queue First in, First Out (FIFO) **Stacks** Last in, First Out (LIFO / FILO)

Recap

Stacks: Last In First Out (LIFO)

- Push (put item on top of the stack)
- Pop (take item off top of stack)
- Top (peek at top of stack)

Queues: First in First Out (FIFO)

- Enqueue (put item on the end of the queue) $\Theta(1)$ (or amortized O(1))
- Dequeue (take item off the front of the queue)
- Head (peek at the item in the front of the queue)

 $\Theta(1)$ (or amortized O(1)) $\Theta(1)$ $\Theta(1)$

 $\Theta(1)$

 $\Theta(1)$

A (Directed) Graph ADT

Two type parameters (Graph[V,E])

- V: The vertex label type
- E: The edge label type

Vertices

...are elements (like Linked List Nodes) ...store a value of type **V**

Edges

...are also elements ...store a value of type **E**

Edge List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(m)
- vertex.incidentEdges: O(m)
- vertex.edgeTo: O(m)
- Space Used: *O*(*n*) + *O*(*m*)

Adjacency List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(deg(vertex))
- vertex.incidentEdges: O(deg(vertex))
- vertex.edgeTo: O(deg(vertex))
- Space Used: *O*(*n*) + *O*(*m*)

Adjacency Matrix Summary

- addEdge, removeEdge: O(1)
- addVertex, removeVertex: $O(n^2)$
- vertex.incidentEdges: O(n)
- vertex.edgeTo: O(1)
- Space Used: $O(n^2)$

DFS vs BFS

DFS (LIFO order...Stacks)

BFS (FIFO order...Queues)

BACK Edge(v,w): w is an ancestor of v in the discovery tree

CROSS Edge(v,w): w is at the same or next level as v

DFS Traversal vs BFS Traversal

Application	DFS	BFS
Spanning Trees	1	1
Connected Components	1	1
Paths/Connectivity	1	1
Cycles	1	1
Shortest Paths		1
Articulation Points	1	