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Announcements

● PA2 is due Sunday
● WA2 will be released ASAP (you will have a full week after break to 

complete it as normal, but I'll release it as early as I can for those that 
want to start early)

● Midterm grading should be completed today, announcement will be on 
Piazza when grades get posted

● I will not curve/adjust individual assignments until the end of the 
semester, and there is no guarantee of that

● Answer keys are posted
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Part 1 - Summations and Bounds

← i is constant with respect to j. Notice how this summation 
expands to (42i + 42i + 42i + … ), the terms don't change

← log(2X) = X. So the first term is just 4n3

← O is the upper bound (nlogn), 𝛀 is the lower 
bound (logn), but 𝚯 does not exist because 
tight O does not equal tight 𝛀
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Part 1 - Summations and Bounds

Prove f(n) ∈ O(g(n)) by finding c and n0

Consider the following inequalities:

6 n3 ≤ c1 * 2 n3     ← This is true if c1 = 3 and n0 = 0

14 n ≤ c2 * 2 n3    ← This is true if c2 = 7 and n0 = 0

-2 ≤ c3 * 2 n3        ← This is true if c3 = 1 and n0 = 0

So if we set c to 11 and n0 to 0, we have:
f(n) ≤ c * g(n) for all n > n0, therefore f(n) is in O(g(n))

Note: There are infinite valid 
values for c and n0

The limit test does not work 
here (does not find c and n0)



Part 2 - Data Structure Choice

For the Social Media Question: The problem described a Graph. The 
algorithm the problem wanted to perform was BFS, which is 
asymptotically faster when our graph is implemented with an Adjacency 
List



Part 2 - Data Structure Choice

For the Photo Question: The distinguishing factor here was that we knew 
we only needed a constant amount of space! No need for the extra bits in 
ArrayBuffer or LinkedLists. Just an Array meets all our needs, which is a 
Seq.

In general: The simplest data structure that meets your needs efficiently, is 
probably the best



Part 3 - Stacks and Queues

FOR QUEUES:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething()) ← Prints "S"
print(seq.removeSomething()) ← Prints "P"
print(seq.removeSomething()) ← Prints "A"
seq.addSomething("E")
print(seq.removeSomething()) ← Prints "C"
seq.addSomething("N")
print(seq.removeSomething()) ← Prints "E"
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FOR STACKS:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething()) ← Prints "C"
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print(seq.removeSomething()) ← Prints "N"



Part 3 - Stacks and Queues

FOR STACKS:
val seq = new MysterySequence()
seq.addSomething("S") ← "S" is leftover
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething()) ← Prints "C"
print(seq.removeSomething()) ← Prints "A"
print(seq.removeSomething()) ← Prints "P"
seq.addSomething("E")
print(seq.removeSomething()) ← Prints "E"
seq.addSomething("N")
print(seq.removeSomething()) ← Prints "N"



Part 3 - Stacks and Queues

Stacks: Last In First Out (LIFO)
● Push (put item on top of the stack) 𝚯(1) (or amortized O(1)) 
● Pop (take item off top of stack) 𝚯(1)
● Top (peek at top of stack) 𝚯(1)

Queues: First in First Out (FIFO)
● Enqueue (put item on the end of the queue) 𝚯(1) (or amortized O(1))
● Dequeue (take item off the front of the queue) 𝚯(1)
● Head (peek at the item in the front of the queue) 𝚯(1)



Part 3 - Stacks and Queues

If n calls to a function take O(T(n))...

We say the Amortized Runtime is O(T(n) / n)

How long does it take to do n pushes in a LinkedList based Stack? O(n)

So amortized runtime of push is O(1)

...it can be the same as the unqualified runtime. Will never be worse.



Part 4 - Arrays and Linked Lists

array.insert(idx = x, elem = "foo")

array.insert(idx = array.length, elem = "bar")

list.insert(idx = list.length, elem = "baz")

Unqualified Worst-Case to insert "foo" is always O(n)

Why?



Part 4 - Arrays and Linked Lists

array.insert(idx = x, elem = "foo")

array.insert(idx = array.length, elem = "bar")

list.insert(idx = list.length, elem = "baz")

Unqualified Worst-Case to insert "foo" is always O(n)

Why? You have to shift the elements to make space.
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Part 4 - Arrays and Linked Lists

array.insert(idx = x, elem = "foo")

array.insert(idx = array.length, elem = "bar")

list.insert(idx = list.length, elem = "baz")

Unqualified Worst-Case to insert "bar" if we assume buffer is not full: O(1)

…but if we can't make that assumption: O(n)



Part 4 - Arrays and Linked Lists

array.insert(idx = x, elem = "foo")

array.insert(idx = array.length, elem = "bar")

list.insert(idx = list.length, elem = "baz")

For a singly linked list, we must iterate from head: O(n)
For a doubly linked list, we have a reference to tail: O(1)



Part 5 - Misc

ADTs just describe what you can do with the data

The data structure is the actual implementation of those capabilities.

ADTS: Seq, Buffer, Stack, Queue, Graph

Data Structures: Array, ArrayBuffer, LinkedList, EdgeList, AdjList, AdjMatrix



Part 5 - Misc

If we hypothesize that the runtime of this recursive algorithm is O(n log(n)), 
then our base case proof must be:

T(1) ≤ c * (1) log (1)

…or T(2)  ≤ c * (2) log (2)



Part 5 - Misc

If we hypothesize that the runtime of this recursive algorithm is O(n log(n)), 
then our inductive assumption would be:

T(n/2) ≤ c * (n/2) log(n/2)



Part 6 - Graphs

Find a spanning tree that would be produced 
by DFS or BFS from A

Spanning subgraph: Must include all nodes

Tree: No loops

DFS: Must include BC and DF

BFS: Must not include BC and DF
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Part 7 - Extra Credit

Is it possible to have a function, f(n), that is in both O(n2) and 𝛀(log n)?

Is f(n) = 3n in 𝛀(log n)? Yes. 𝛀(log n) bounds 3n from below. Not tightly, 
but it's still a bound.


