CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Midterm Recap

Announcements

- PA2 is due Sunday
- WA2 will be released ASAP (you will have a full week after break to complete it as normal, but I'll release it as early as I can for those that want to start early)
- Midterm grading should be completed today, announcement will be on Piazza when grades get posted
- I will not curve/adjust individual assignments until the end of the semester, and there is no guarantee of that
- Answer keys are posted

 $f(n) = \sum_{i=1}^{n^4} \sum_{j=1}^n 42i$

$$f(n) = 4\log(2^{n^3}) + n^2 - 16$$

 $f(n) = \begin{cases} log(n) & \text{if } n \text{ is prime} \\ 16n & \text{if } n > 10 \text{ and is even} \\ 19nlog(n) & \text{otherwise} \end{cases}$

 $f(n) = \sum_{i=1}^{n^*} \sum_{j=1}^{n} 42i \leftarrow i \text{ is constant with respect to } j. \text{ Notice how this summation} \\ \text{expands to } (42i + 42i + 42i + ...), \text{ the terms don't change}$

$$f(n) = 4log(2^{n^3}) + n^2 - 16$$

 $f(n) = \begin{cases} log(n) & \text{if } n \text{ is prime} \\ 16n & \text{if } n > 10 \text{ and is even} \\ 19nlog(n) & \text{otherwise} \end{cases}$

 $f(n) = \sum_{i=1}^{n^4} \sum_{j=1}^{n} 42i \leftarrow i \text{ is constant with respect to } j. \text{ Notice how this summation} \\ \text{expands to } (42i + 42i + 42i + ...), \text{ the terms don't change}$

 $f(n) = 4log(2^{n^3}) + n^2 - 16 \leftarrow log(2^X) = X$. So the first term is just $4n^3$

 $f(n) = \begin{cases} log(n) & \text{if } n \text{ is prime} \\ 16n & \text{if } n > 10 \text{ and is even} \\ 19nlog(n) & \text{otherwise} \end{cases}$

 $f(n) = \sum_{i=1}^{n^*} \sum_{j=1}^{n} 42i \leftarrow i \text{ is constant with respect to } j. \text{ Notice how this summation} \\ \text{expands to } (42i + 42i + 42i + ...), \text{ the terms don't change}$

$$f(n) = 4log(2^{n^3}) + n^2 - 16 \leftarrow log(2^X)$$
 = X. So the first term is just $4n^3$

 $f(n) = \begin{cases} log(n) & \text{if } n \text{ is prime} \\ 16n & \text{if } n > 10 \text{ and is even} \\ 19nlog(n) & \text{otherwise} \end{cases}$

 \leftarrow **0** is the upper bound (nlogn), **Ω** is the lower bound (logn), but **Θ** does not exist because tight **0** does not equal tight **Ω**

Prove $f(n) \in O(g(n))$ by finding c and n₀

$$f(n) = 6n^3 + 14n - 2$$
$$g(n) = 2n^3$$

Prove $f(n) \in O(g(n))$ by finding c and n_0

$$f(n) = 6n^3 + 14n - 2$$
$$g(n) = 2n^3$$

Consider the following inequalities:

6 $n^3 \le c_1 * 2 n^3 \quad \leftarrow$ This is true if $c_1 = 3$ and $n_0 = 0$ 14 $n \le c_2 * 2 n^3 \quad \leftarrow$ This is true if $c_2 = 7$ and $n_0 = 0$ -2 $\le c_3 * 2 n^3 \quad \leftarrow$ This is true if $c_3 = 1$ and $n_0 = 0$

So if we set c to 11 and n_0 to 0, we have: $f(n) \le c * g(n)$ for all $n > n_0$, therefore f(n) is in O(g(n)) Note: There are infinite valid values for c and n_0

The limit test does not work here (does not find c and n_0)

Part 2 - Data Structure Choice

For the Social Media Question: The problem described a Graph. The algorithm the problem wanted to perform was BFS, which is asymptotically faster when our graph is implemented with an Adjacency List

Part 2 - Data Structure Choice

For the Photo Question: The distinguishing factor here was that we knew we only needed a constant amount of space! No need for the extra bits in ArrayBuffer or LinkedLists. Just an **Array** meets all our needs, which is a **Seq**.

In general: The simplest data structure that meets your needs efficiently, is probably the best

```
FOR QUEUES:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething())
print(seq.removeSomething())
print(seq.removeSomething())
seq.addSomething("E")
print(seq.removeSomething())
seq.addSomething("N")
print(seq.removeSomething())
```

- \leftarrow Prints "S"
- ← Prints "P"
- \leftarrow Prints "A"
- \leftarrow Prints "C"
- \leftarrow Prints "E"

```
FOR QUEUES:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething())
print(seq.removeSomething())
print(seq.removeSomething())
seq.addSomething("E")
print(seq.removeSomething())
seq.addSomething("N")
print(seq.removeSomething())
```

- $\begin{array}{l} \leftarrow \text{ Prints "S"} \\ \leftarrow \text{ Prints "P"} \end{array}$
- \leftarrow Prints "A"
- ← Prints "C"
 ← "N" is leftover
 ← Prints "E"

```
FOR STACKS:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething())
print(seq.removeSomething())
print(seq.removeSomething())
seq.addSomething("E")
print(seq.removeSomething())
seq.addSomething("N")
print(seq.removeSomething())
```

- \leftarrow Prints "C"
- \leftarrow Prints "A"
- \leftarrow Prints "P"
- \leftarrow Prints "E"
- \leftarrow Prints "N"

```
FOR STACKS:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething())
print(seq.removeSomething())
print(seq.removeSomething())
seq.addSomething("E")
print(seq.removeSomething())
seq.addSomething("N")
print(seq.removeSomething())
```

$$\leftarrow$$
 "S" is leftover

$$\leftarrow$$
 Prints "C"

$$\leftarrow$$
 Prints "A"

$$\leftarrow$$
 Prints "P"

 \leftarrow Prints "E"

$$\leftarrow$$
 Prints "N"

Stacks: Last In First Out (LIFO)

- Push (put item on top of the stack)
- Pop (take item off top of stack)
- Top (peek at top of stack)

Queues: First in First Out (FIFO)

- Enqueue (put item on the end of the queue) $\Theta(1)$ (or amortized O(1))
- Dequeue (take item off the front of the queue)
- Head (peek at the item in the front of the queue)

 $\Theta(1)$ (or amortized O(1)) $\Theta(1)$ $\Theta(1)$

 $\Theta(1)$

 $\Theta(1)$

If n calls to a function take O(T(n))...

We say the **<u>Amortized Runtime</u>** is O(T(n) / n)

How long does it take to do **n** pushes in a LinkedList based Stack? **O(n)**

So amortized runtime of push is O(1)

... it can be the same as the unqualified runtime. Will never be worse.

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

Unqualified Worst-Case to insert "foo" is always O(n)

Why?

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

Unqualified Worst-Case to insert "foo" is always O(n)

Why? You have to shift the elements to make space.

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

Unqualified Worst-Case to insert "bar" if we assume buffer is not full: O(1)

$$T_{append}(n) = \begin{cases} n & \text{if used} = n \\ 1 & \text{otherwise} \end{cases}$$

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

Unqualified Worst-Case to insert "bar" if we assume buffer is not full: O(1)

$$T_{append}(n) = \begin{cases} n & \text{if used} = n \\ 1 & \text{otherwise} \end{cases}$$

...but if we can't make that assumption: O(n)

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

For a singly linked list, we must iterate from head: O(n) For a doubly linked list, we have a reference to tail: O(1)

Part 5 - Misc

ADTs just describe **what** you can do with the data

The data structure is the actual implementation of those capabilities.

ADTS: Seq, Buffer, Stack, Queue, Graph

Data Structures: Array, ArrayBuffer, LinkedList, EdgeList, AdjList, AdjMatrix

Part 5 - Misc

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(1) + \Theta(n) & \text{otherwise} \end{cases}$$

If we hypothesize that the runtime of this recursive algorithm is $O(n \log(n))$, then our base case proof must be:

 $T(1) \le c * (1) \log (1)$

...or $T(2) \le c * (2) \log (2)$

Part 5 - Misc

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ 2 \cdot T(\frac{n}{2}) + \Theta(1) + \Theta(n) & \text{otherwise} \end{cases}$$

If we hypothesize that the runtime of this recursive algorithm is O(n log(n)), then our inductive assumption would be:

 $T(n/2) \le c * (n/2) \log(n/2)$

Part 6 - Graphs

Find a spanning tree that would be produced by DFS or BFS from A

Spanning subgraph: Must include all nodes

Tree: No loops

DFS: Must include BC and DF

BFS: Must not include BC and DF

Is it possible to have a function, f(n), that is in both $O(n^2)$ and $\Omega(\log n)$?

Is $f(n) = 3n \text{ in } O(n^2)$?

Is it possible to have a function, f(n), that is in both $O(n^2)$ and $\Omega(\log n)$?

Is f(n) = 3n in $O(n^2)$? **Yes.** $O(n^2)$ bounds 3n from above. Not tightly, but it's still a bound.

Is it possible to have a function, f(n), that is in both $O(n^2)$ and $\Omega(\log n)$?

Is f(n) = 3n in $\Omega(\log n)$?

Is it possible to have a function, f(n), that is in both $O(n^2)$ and $\Omega(\log n)$?

Is f(n) = 3n in $\Omega(\log n)$? **Yes.** $\Omega(\log n)$ bounds 3n from below. Not tightly, but it's still a bound.