CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Midterm Recap

Announcements

- PA2 is due Sunday
- WA2 will be released ASAP (you will have a full week after break to complete it as normal, but l'll release it as early as I can for those that want to start early)
- Midterm grading should be completed today, announcement will be on Piazza when grades get posted
- I will not curve/adjust individual assignments until the end of the semester, and there is no guarantee of that
- Answer keys are posted

Part 1 - Summations and Bounds

$$
f(n)= \begin{cases}\log (n) & \text { if } n \text { is prime } \\ 16 n & \text { if } n>10 \text { and is even } \\ 19 n \log (n) & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& 100 \text { Exic } \\
& f(n)=4 \log \left(2^{n^{3}}\right)+n^{2}-16
\end{aligned}
$$

Part 1 - Summations and Bounds

$f(n)=\sum_{i=1}^{n^{4}} \sum_{j=1}^{n} 42 i \quad \leftarrow i$ is constant with respect to j. Notice how this summation
$f(n)=4 \log \left(2^{n^{3}}\right)+n^{2}-16$
$f(n)= \begin{cases}\log (n) & \text { if } n \text { is prime } \\ 16 n & \text { if } n>10 \text { and is even } \\ 19 n \log (n) & \text { otherwise }\end{cases}$

Part 1 - Summations and Bounds

$f(n)=\sum_{i=1}^{n^{4}} \sum_{j=1}^{n} 42 i i \leftarrow i$ is constant with respect to j. Notice how this summation
$f(n)=4 \log \left(2^{n^{3}}\right)+n^{2}-16 \leftarrow \log \left(2^{\mathrm{X}}\right)=\mathrm{X}$. So the first term is just $4 \mathrm{n}^{3}$
$f(n)= \begin{cases}\log (n) & \text { if } n \text { is prime } \\ 16 n & \text { if } n>10 \text { and is even } \\ 19 n \log (n) & \text { otherwise }\end{cases}$

Part 1 - Summations and Bounds

$f(n)=\sum_{i=1}^{n^{4}} \sum_{j=1}^{n} 42 i \quad \leftarrow i$ is constant with respect to j. Notice how this summation
$f(n)=4 \log \left(2^{n^{3}}\right)+n^{2}-16 \leftarrow \log \left(2^{\mathrm{X}}\right)=\mathrm{X}$. So the first term is just $4 \mathrm{n}^{3}$
$f(n)= \begin{cases}\log (n) & \text { if } n \text { is prime } \\ 16 n & \text { if } n>10 \text { and is even } \\ \operatorname{19nlog}(n) & \text { otherwise }\end{cases}$
$\leftarrow \boldsymbol{O}$ is the upper bound (nlogn), $\boldsymbol{\Omega}$ is the lower bound (logn), but Θ does not exist because tight \mathbf{O} does not equal tight $\boldsymbol{\Omega}$

Part 1 - Summations and Bounds

Prove $\boldsymbol{f}(\boldsymbol{n}) \in \mathbf{O}(\boldsymbol{g}(\boldsymbol{n}))$ by finding c and n_{0}

$$
\begin{aligned}
& f(n)=6 n^{3}+14 n-2 \\
& g(n)=2 n^{3}
\end{aligned}
$$

Part 1 - Summations and Bounds

Prove $\boldsymbol{f}(\boldsymbol{n}) \in \mathbf{O}(\boldsymbol{g}(\boldsymbol{n}))$ by finding c and n_{0}

$$
f(n)=6 n^{3}+14 n-2
$$

$$
g(n)=2 n^{3}
$$

Consider the following inequalities:
$6 n^{3} \leq c_{1}{ }^{*} 2 n^{3} \leftarrow$ This is true if $c_{1}=3$ and $n_{0}=0$
$14 n \leq c_{2}{ }^{*} 2 n^{3} \leftarrow$ This is true if $c_{2}=7$ and $n_{0}=0$
$-2 \leq c_{3}{ }^{*} 2 n^{3} \leftarrow$ This is true if $c_{3}=1$ and $n_{0}=0$
So if we set c to 11 and n_{0} to 0 , we have:
$f(n) \leq c * g(n)$ for all $n>n_{0}$, therefore $f(n)$ is in $O(g(n))$

Note: There are infinite valid values for c and n_{0}

The limit test does not work here (does not find c and n_{0})

Part 2 - Data Structure Choice

For the Social Media Question: The problem described a Graph. The algorithm the problem wanted to perform was BFS, which is asymptotically faster when our graph is implemented with an Adjacency List

Part 2 - Data Structure Choice

For the Photo Question: The distinguishing factor here was that we knew we only needed a constant amount of space! No need for the extra bits in ArrayBuffer or LinkedLists. Just an Array meets all our needs, which is a Seq.

In general: The simplest data structure that meets your needs efficiently, is probably the best

Part 3 - Stacks and Queues

```
FOR QUEUES:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething())
print(seq.removeSomething())
print(seq.removeSomething())
\leftarrow Prints "S"
\leftarrow Prints "A"
seq.addSomething("E")
print(seq.removeSomething())
\leftarrow Prints "C"
seq.addSomething("N")
print(seq.removeSomething())
```

\leftarrow Prints "S"
\leftarrow Prints "P"
\leftarrow Prints "A"
\leftarrow Prints "C"
\leftarrow Prints "E"

Part 3 - Stacks and Queues

```
FOR QUEUES:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething())
print(seq.removeSomething())
print(seq.removeSomething())
\leftarrow Prints "S"
seq.addSomething("E")
print(seq.removeSomething())
seq.addSomething("N")
print(seq.removeSomething())
```

\leftarrow Prints "S"
\leftarrow Prints "P"
\leftarrow Prints "A"
\leftarrow Prints "C"
\leftarrow "N" is leftover
\leftarrow Prints "E"

Part 3 - Stacks and Queues

```
FOR STACKS:
val seq = new MysterySequence()
seq.addSomething("S")
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething())
print(seq.removeSomething())
print(seq.removeSomething())
    \leftarrow Prints "C"
\leftarrow Prints "P"
seq.addSomething("E")
print(seq.removeSomething())
\leftarrow Prints "E"
seq.addSomething("N")
print(seq.removeSomething())
```

\leftarrow Prints "C"
\leftarrow Prints "A"
\leftarrow Prints "P"
\leftarrow Prints "E"
\leftarrow Prints "N"

Part 3 - Stacks and Queues

```
FOR STACKS:
val seq = new MysterySequence()
seq.addSomething("S") \leftarrow "S" is leftover
seq.addSomething("P")
seq.addSomething("A")
seq.addSomething("C")
print(seq.removeSomething())
print(seq.removeSomething())
print(seq.removeSomething())
\leftarrow Prints "C"
    \leftarrowPrints "A"
seq.addSomething("E")
print(seq.removeSomething())
seq.addSomething("N")
print(seq.removeSomething())
    \leftarrow Prints "P"
\leftarrow Prints "E"
\leftarrow ~ \& r i n t s ~ " N " ~
```


Part 3 - Stacks and Queues

Stacks: Last In First Out (LIFO)

- Push (put item on top of the stack)
- Pop (take item off top of stack)
$\boldsymbol{\Theta}(1)$ (or amortized $O(1)$)
$\boldsymbol{\Theta}(1)$
- Top (peek at top of stack) $\boldsymbol{\Theta}(1)$

Queues: First in First Out (FIFO)

- Enqueue (put item on the end of the queue) $\boldsymbol{\Theta}(1)$ (or amortized $O(1)$)
- Dequeue (take item off the front of the queue) $\boldsymbol{\Theta}(1)$
- Head (peek at the item in the front of the queue) $\boldsymbol{\Theta}(1)$

Part 3 - Stacks and Queues

If n calls to a function take $O(T(n))$...
We say the Amortized Runtime is $O(T(n) / n)$

How long does it take to do n pushes in a LinkedList based Stack? O(n)
So amortized runtime of push is $0(1)$
...it can be the same as the unqualified runtime. Will never be worse.

Part 4 - Arrays and Linked Lists

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

Unqualified Worst-Case to insert "foo" is always $\mathbf{O}(\mathrm{n})$

Why?

Part 4 - Arrays and Linked Lists

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```


Unqualified Worst-Case to insert "foo" is always O(n)

Why? You have to shift the elements to make space.

Part 4 - Arrays and Linked Lists

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

Unqualified Worst-Case to insert "bar" if we assume buffer is not full: $\boldsymbol{O}(1)$

$$
T_{\text {append }}(n)= \begin{cases}n & \text { if used }=\mathrm{n} \\ 1 & \text { otherwise }\end{cases}
$$

Part 4 - Arrays and Linked Lists

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

Unqualified Worst-Case to insert "bar" if we assume buffer is not full: $\boldsymbol{O}(1)$

$$
T_{\text {append }}(n)= \begin{cases}n & \text { if used }=\mathrm{n} \\ 1 & \text { otherwise }\end{cases}
$$

...but if we can't make that assumption: $O(n)$

Part 4 - Arrays and Linked Lists

```
array.insert(idx = x, elem = "foo")
array.insert(idx = array.length, elem = "bar")
list.insert(idx = list.length, elem = "baz")
```

For a singly linked list, we must iterate from head: $O(n)$
For a doubly linked list, we have a reference to tail: 0 (1)

Part 5 - Misc

ADTs just describe what you can do with the data
The data structure is the actual implementation of those capabilities.
ADTS: Seq, Buffer, Stack, Queue, Graph
Data Structures: Array, ArrayBuffer, LinkedList, EdgeList, AdjList, AdjMatrix

Part 5 - Misc

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ 2 \cdot T\left(\frac{n}{2}\right)+\Theta(1)+\Theta(n) & \text { otherwise }\end{cases}
$$

If we hypothesize that the runtime of this recursive algorithm is $O(n \log (n))$, then our base case proof must be:
$T(1) \leq c *(1) \log (1)$
\ldots..or $T(2) \leq c$ * (2) $\log (2)$

Part 5 - Misc

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ 2 \cdot T\left(\frac{n}{2}\right)+\Theta(1)+\Theta(n) & \text { otherwise }\end{cases}
$$

If we hypothesize that the runtime of this recursive algorithm is $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$, then our inductive assumption would be:
$T(n / 2) \leq c *(n / 2) \log (n / 2)$

Part 6 - Graphs

Find a spanning tree that would be produced by DFS or BFS from A

Spanning subgraph: Must include all nodes
Tree: No loops
DFS: Must include BC and DF
BFS: Must not include BC and DF

Part 7-Extra Credit

Is it possible to have a function, $\mathrm{f}(\mathrm{n})$, that is in both $\boldsymbol{O}\left(\mathrm{n}^{2}\right)$ and $\boldsymbol{\Omega}(\log \mathrm{n})$?

Is $f(n)=3 n$ in $O\left(n^{2}\right)$?

Part 7 -Extra Credit

Is it possible to have a function, $\mathrm{f}(\mathrm{n})$, that is in both $\boldsymbol{O}\left(\mathrm{n}^{2}\right)$ and $\boldsymbol{\Omega}(\log \mathrm{n})$?

Is $f(n)=3 n$ in $\mathbf{O}\left(n^{2}\right)$? Yes. $\mathbf{O}\left(n^{2}\right)$ bounds $3 n$ from above. Not tightly, but it's still a bound.

Part 7-Extra Credit

Is it possible to have a function, $\mathrm{f}(\mathrm{n})$, that is in both $\boldsymbol{O}\left(\mathrm{n}^{2}\right)$ and $\boldsymbol{\Omega}(\log \mathrm{n})$?

Is $f(n)=3 n$ in $\boldsymbol{\Omega}(\log n)$?

Part 7 -Extra Credit

Is it possible to have a function, $\mathrm{f}(\mathrm{n})$, that is in both $\boldsymbol{O}\left(\mathrm{n}^{2}\right)$ and $\boldsymbol{\Omega}(\log \mathrm{n})$?

Is $f(n)=3 n$ in $\boldsymbol{\Omega}(\log n)$? Yes. $\boldsymbol{\Omega}(\log n)$ bounds $3 n$ from below. Not tightly, but it's still a bound.

