CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Heaps

Textbook Ch. 18

Announcements

- WA2 due Sunday

PriorityQueue ADT

PriorityQueue[A <:Ordering]
enqueue(v: A) : Unit
Insert value v into the priority queue
dequeue: A
Remove the greatest element in the priority queue
head: A
Peek at the greatest element in the priority queue

Priority Queues

Two mentalities...
Lazy: Keep everything a mess ("Selection Sort")
Proactive: Keep everything organized ("Insertion Sort")

Priority Queues

Operation	Lazy	Proactive
enqueue	$O(1)$	$O(n)$
dequeue	$O(n)$	$O(1)$
head	$O(n)$	$O(1)$

Priority Queues

Operation	Lazy	Proactive
enqueue	$O(1)$	$O(n)$
dequeue	$O(n)$	$O(1)$
head	$O(n)$	$O(1)$

Can we do better?

Priority Queues

Lazy - Fast Enqueue, Slow Dequeue
Proactive - Slow Enqueue, Fast Dequeue

Priority Queues

Lazy - Fast Enqueue, Slow Dequeue
Proactive - Slow Enqueue, Fast Dequeue
??? - Fast(-ish) Enqueue, Fast(-ish) Dequeue

Priority Queues

Idea: Keep the priority queue "kinda" sorted.
Hopefully "kinda" sorted is cheaper to maintain than a full sort, but still gives us some of the benefits.

Priority Queues

Idea: Keep the priority queue "kinda" sorted.
Keep larger items towards the front of the list, and keep the front of the list more sorted than the back...

Binary Heaps

Challenge: If we are only "kinda" sorting, how do we know which elements are actually sorted?

Binary Heaps

Idea: Organize the priority queue as a directed tree!
A directed edge from \boldsymbol{a} to \boldsymbol{b} means that $\boldsymbol{a} \geq \boldsymbol{b}$

More Tree Terminology

Child - An adjacent node connected by an out-edge

More Tree Terminology

Child - An adjacent node connected by an out-edge
Leaf - A node with no children

More Tree Terminology

Child - An adjacent node connected by an out-edge
Leaf - A node with no children
Depth (of a node) - The number of edges from the root to the node

More Tree Terminology

Child - An adjacent node connected by an out-edge
Leaf - A node with no children
Depth (of a node) - The number of edges from the root to the node
Depth (of a tree) - The maximum depth of any node in the tree

More Tree Terminology

Child - An adjacent node connected by an out-edge
Leaf - A node with no children
Depth (of a node) - The number of edges from the root to the node
Depth (of a tree) - The maximum depth of any node in the tree
Level (of a node) - depth + 1

More Tree Terminology

A is the root
\mathbf{B} and \mathbf{C} are children of \mathbf{A}
D is a child of \mathbf{C}
\mathbf{E} and \mathbf{F} are children of \mathbf{D}
B, E and F are leaves
The depth of \mathbf{A} is $\mathbf{0}, \mathbf{B}$ and $\mathbf{C}: \mathbf{1}, \mathbf{D}: 2, \mathbf{E}$ and $\mathbf{F}: 3$
The depth of the tree is 3

Binary Heaps

Organize our priority queue as a directed tree
Directed: A directed edge from \boldsymbol{a} to \boldsymbol{b} means that $\boldsymbol{a} \geq \boldsymbol{b}$

Binary Heaps

Organize our priority queue as a directed tree
Directed: A directed edge from \boldsymbol{a} to \boldsymbol{b} means that $\boldsymbol{a} \geq \boldsymbol{b}$
Binary: Max out-degree of 2 (easy to reason about)

Binary Heaps

Organize our priority queue as a directed tree
Directed: A directed edge from \boldsymbol{a} to \boldsymbol{b} means that $\boldsymbol{a} \geq \boldsymbol{b}$
Binary: Max out-degree of 2 (easy to reason about)
Complete: Every "level" except the last is full (from left to right)

Binary Heaps

Organize our priority queue as a directed tree
Directed: A directed edge from \boldsymbol{a} to \boldsymbol{b} means that $\boldsymbol{a} \geq \boldsymbol{b}$
Binary: Max out-degree of 2 (easy to reason about)
Complete: Every "level" except the last is full (from left to right)
Balanced: TBD (basically, all leaves are roughly at the same level)

Binary Heaps

Organize our priority queue as a directed tree
Directed: A directed edge from \boldsymbol{a} to \boldsymbol{b} means that $\boldsymbol{a} \geq \boldsymbol{b}$
Binary: Max out-degree of 2 (easy to reason about)
Complete: Every "level" except the last is full (from left to right)
Balanced: TBD (basically, all leaves are roughly at the same level)
This makes it easy to encode into an array (later today)

Max Heaps

If we use \geq as our ordering operation, we have a Max Heap (as compared to a Min Heap)

Valid Max Heaps

Invalid Max Heaps

Invalid Max Heaps

Invalid Max Heaps

Invalid Max Heaps

Heaps

What is the depth of a binary heap containing \boldsymbol{n} items?
Level 1: holds up to 1 item

Heaps

What is the depth of a binary heap containing \boldsymbol{n} items?
Level 1: holds up to 1 item
Level 2: holds up to 2 items

Heaps

What is the depth of a binary heap containing \boldsymbol{n} items?
Level 1: holds up to 1 item
Level 2: holds up to 2 items
Level 3: holds up to 4 items

Heaps

What is the depth of a binary heap containing \boldsymbol{n} items?
Level 1: holds up to 1 item
Level 2: holds up to 2 items
Level 3: holds up to 4 items
Level 4: holds up to 8 items

Heaps

What is the depth of a binary heap containing \boldsymbol{n} items?
Level 1: holds up to 1 item
Level 2: holds up to 2 items
Level 3: holds up to 4 items
Level 4: holds up to 8 items

Level i : holds up to 2^{i-1} items

Heaps

What is the depth of a binary heap containing \boldsymbol{n} items?

$$
n=O\left(\sum_{i=1}^{\ell_{\max }} 2^{i}\right)=O\left(2^{\ell_{\max }}\right)
$$

Heaps

What is the depth of a binary heap containing \boldsymbol{n} items?

$$
\begin{gathered}
n=O\left(\sum_{i=1}^{\ell_{\max }} 2^{i}\right)=O\left(2^{\ell_{\max }}\right) \\
\ell_{\max }=O(\log (n))
\end{gathered}
$$

The Heap ADT

enqueue (elem: A) : Unit
Place an item into the heap
dequeue: A
Remove and return the maximal element from the heap
head: A
Peek at the maximal element in the heap
length: Int
The number of elements in the heap

Heap.enqueue

Idea: Insert the element at the next available spot, then fix the heap.

Heap.enqueue

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current ! = root and current $>$ parent
a. Swap current with parent
b. Repeat with current \leftarrow parent

Heap.enqueue

 What if we enqueue 6?

Heap.enqueue

What if we enqueue 6?
Place in the next available spot

Heap.enqueue

What if we enqueue 6?
Swap with parent if it is bigger than the parent

Heap.enqueue

 What if we enqueue 6? Continue swapping upwards...

Heap. enqueue

 What if we enqueue 6?Stop swapping when we are no longer bigger than our parent

Heap.enqueue - fixUp

```
def fixUp[A: Ordering](current: Vertex[A]): Unit = {
    if(current.parent.isDefined) {
        val parent = current.parent.get
        if( Ordering[A].lt( parent.value, current.value ) ) {
            swap(current.value, parent.value)
            fixUp (parent)
        }
    }
}
```


Heap.enqueue - fixUp

```
def fixUp[A: Ordering](current: Vertex[A]): Unit = {
    if(current.parent.isDefined) {
        val parent = current.parent.get
        if( Ordering[A].lt( parent.value, current.value ) ) {
            swap(current.value, parent.value)
            fixUp (parent)
        }
    }
}
```

What is the complexity (or how many swaps occur)?

Heap.enqueue - fixUp

```
def fixUp[A: Ordering](current: Vertex[A]): Unit = {
    if(current.parent.isDefined) {
        val parent = current.parent.get
        if( Ordering[A].lt( parent.value, current.value ) ) {
            swap(current.value, parent.value)
            fixUp (parent)
        }
    }
}
```

What is the complexity (or how many swaps occur)? $\mathbf{O}(\log (n))$

Heap. dequeue

Heap. dequeue

Idea: Replace root with the last element then fix the heap

Heap . dequeue

Idea: Replace root with the last element then fix the heap

1. Start with current \leftarrow root
2. While current has a child > current
a. Swap current with its largest child
b. Repeat with current \leftarrow child

Heap. dequeue

 What if we call dequeue?

Heap. dequeue

 What if we call dequeue?Remove and return the root

Heap. dequeue

 What if we call dequeue?Make the last item the new root

Heap. dequeue

 What if we call dequeue? Check for our largest child

Heap. dequeue

 What if we call dequeue?If the largest child is bigger than us, swap

Heap. dequeue

 What if we call dequeue?Continue swapping down the tree as necessary...

Heap. dequeue

 What if we call dequeue?Continue swapping down the tree as necessary...

Heap. dequeue

 What if we call dequeue?Stop swapping when our children are no longer bigger

Heap.dequeue - fixDown

```
def fixDown[A: Ordering] (current: Vertex[A]): Unit = {
    val maxChild = getMaxChildOf(current)
    if( maxChild.isDefined ) {
        val max = maxChild.get
        if( Ordering[A].lt( current.value, max.value ) ) {
            swap(current.value, max.value);
            fixDown(max)
        }
    }
}
```


Heap.dequeue - fixDown

```
def fixDown[A: Ordering] (current: Vertex[A]): Unit = {
    val maxChild = getMaxChildOf(current)
    if( maxChild.isDefined ) {
        val max = maxChild.get
        if( Ordering[A].lt( current.value, max.value ) ) {
            swap(current.value, max.value) ;
            fixDown (max)
            }
    }
}
```

What is the complexity (or how many swaps occur)?

Heap.dequeue - fixDown

```
def fixDown[A: Ordering] (current: Vertex[A]): Unit = {
    val maxChild = getMaxChildOf(current)
    if( maxChild.isDefined ) {
        val max = maxChild.get
        if( Ordering[A].lt( current.value, max.value ) ) {
            swap(current.value, max.value) ;
            fixDown (max)
            }
    }
}
```

What is the complexity (or how many swaps occur)? $\mathbf{O}(\mathbf{l o g}(n))$

Priority Queues

Operation	Lazy	Proactive	Heap
enqueue	$O(1)$	$O(n)$	$O(\log (n))$
dequeue	$O(n)$	$O(1)$	$O(\log (n))$
head	$O(n)$	$O(1)$	$O(1)$

Storing heaps

Notice that:

1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?

Storing heaps

Notice that:

1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?
Idea: Use an ArrayBuffer

Storing Heaps

How can we store this heap in an array buffer?

Storing Heaps

How can we store this heap in an array buffer?

Storing Heaps

How can we store this heap in an array buffer?

Storing Heaps

How can we store this heap in an array buffer?

Storing Heaps

How can we store this heap in an array buffer?

Storing Heaps

How can we store this heap in an array buffer?

Storing Heaps

How can we store this heap in an array buffer?

Storing Heaps

How can we store this heap in an array buffer?

Runtime Analysis

enqueue

Runtime Analysis

enqueue

- Append to ArrayBuffer: amortized O(1) (unqualified O(n))

Runtime Analysis

enqueue

- Append to ArrayBuffer: amortized $O(1)$ (unqualified $O(n)$)
- fixUp: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$

Runtime Analysis

enqueue

- Append to ArrayBuffer: amortized $O(1)$ (unqualified $O(n)$)
- fixUp: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$
- Total: amortized $O(\log (n))$ (unqualified $O(n)$)

Runtime Analysis

enqueue

- Append to ArrayBuffer: amortized $O(1)$ (unqualified $O(n)$)
- fixUp: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$
- Total: amortized $O(\log (n))$ (unqualified $O(n)$)
dequeue

Runtime Analysis

enqueue

- Append to ArrayBuffer: amortized $O(1)$ (unqualified $O(n)$)
- fixUp: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$
- Total: amortized $O(\log (n))$ (unqualified $O(n)$)
dequeue
- Remove end of ArrayBuffer: $O(1)$

Runtime Analysis

enqueue

- Append to ArrayBuffer: amortized $O(1)$ (unqualified O(n))
- fixUp: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$
- Total: amortized $O(\log (n))$ (unqualified $O(n)$)
dequeue
- Remove end of ArrayBuffer: $O(1)$
- fixDown: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$

Runtime Analysis

enqueue

- Append to ArrayBuffer: amortized $O(1)$ (unqualified O(n))
- fixUp: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$
- Total: amortized $O(\log (n))$ (unqualified $O(n)$)
dequeue
- Remove end of ArrayBuffer: $O(1)$
- fixDown: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$
- Total: worst-case $O(\log (n))$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
\underline{7}, 4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

7	$\mathbf{4}$													

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4, \underline{8}, 2,5,3,9
$$

7	4	8												

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4, \underline{8}, 2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4, \underline{8}, 2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8, \underline{2}, 5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8, \underline{2}, 5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2, \underline{5}, 3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2, \underline{5}, 3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2, \underline{5}, 3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2, \underline{5}, 3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

8	5	7	2	4	3									

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

8	5	7	2	4	3	9								

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

9	5	8	2	4	3	7								

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

| 5 | 8 | 2 | 4 | 3 | 7 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

7	5	8	2	4	3									

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

| 5 | 7 | 2 | 4 | 3 | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

3	5	7	2	4										

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

8,9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

8,9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

| 5 | 3 | 2 | 4 | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

4	5	3	2											

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$$
5,7,8,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$$
5,7,8,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$$
5,7,8,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$$
5,7,8,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$4,5,7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$4,5,7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$3,4,5,7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$3,4,5,7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$2,3,4,5,7,8,9$

Heap Sort

Heap Sort

Enqueue element i: $O(\log (i))$

Heap Sort

Enqueue element i: $O(\log (i))$

Dequeue element i: $O(\log (n-i))$

Heap Sort

Enqueue element i: $O(\log (i))$

Dequeue element i: $O(\log (n-i))$

Heap Sort

Enqueue element i: $O(\log (i))$

Dequeue element i: $O(\log (n-i))$

$$
\left(\sum_{i=1}^{n} O(\log (i))\right)+\left(\sum_{i=1}^{n} O(\log (n-i))\right)<O(n \log (n))
$$

Updating Heap Elements

What if we want to update a value in our Heap?

Updating Heap Elements

What if we want to update a value in our Heap?
After update we can just call fixUp or fixDown based on the new value

Heap. update

What if we change the value of the 5 node to 0 ?

Heap. update

We now have to fixUp or fixDown based on the new value

Heap. update

We now have to fixup or fixDown based on the new value

Heap. update

We now have to fixup or fixDown based on the new value

Heap. update

We now have to fixup or fixDown based on the new value

Updating Heap Elements

What if we want to update a value in our Heap?
After update we can just call fixUp or fixDown based on the new value

Updating Heap Elements

What if we want to update a value in our Heap?
After update we can just call fixup or fixDown based on the new value Can we apply this idea to an entire array?

Heapify

Input: Array
Output: Array re-ordered to be a heap

Heapify

Input: Array
Output: Array re-ordered to be a heap
Idea: fixUp or fixDown all \boldsymbol{n} elements in the array

Heapify

Input: Array
Output: Array re-ordered to be a heap
Idea: fixUp or fixDown all \boldsymbol{n} elements in the array
Given the cost of fixup and fixDown what do we expect the complexity Heapify will be?

Heapify

Given an arbitrary array (show as a tree here) turn it into a heap

Heapify

Start at the lowest level, and call fixDown on each node (0 swaps per node)

Heapify

Do the same at the next lowest level (at most one swap per node)

Heapify

Do the same at the next lowest level (at most one swap per node)

Heapify

Continue upwards (now at most 2 swaps per node)

Heapify

Continue upwards (now at most 2 swaps per node)

Heapify

Continue upwards (now at most 2 swaps per node)

Heapify

Continue upwards (now at most 2 swaps per node)

Heapify

At level $\log (n)$: Call fixDown on all $n / 2$ nodes at this level (max 0 swaps each)

Heapify

At level $\log (n)$: Call fixDown on all $n / 2$ nodes at this level (max 0 swaps each)
At level $\log (n)-1:$ Call fixDown on all $n / 4$ nodes at this level (max 1 swaps each)

Heapify

At level $\log (n)$: Call fixDown on all $n / 2$ nodes at this level (max 0 swaps each)
At level $\log (n)-1:$ Call fixDown on all $n / 4$ nodes at this level (max 1 swaps each)
At level $\log (n)-2:$ Call fixDown on all $n / 8$ nodes at this level (max 2 swaps each)

Heapify

At level $\log (n)$: Call fixDown on all $n / 2$ nodes at this level (max 0 swaps each)
At level $\log (n)-1:$ Call fixDown on all $n / 4$ nodes at this level (max 1 swaps each)
At level $\log (n)-2:$ Call fixDown on all $n / 8$ nodes at this level (max 2 swaps each)

At level 1: Call fixDown on all 1 nodes at this level (max $\log (n)$ swaps each)

$$
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right)
$$

Heapify

Sum the number of swaps required by each level

$$
\begin{array}{r}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right)
\end{array}
$$

Pull out the n as a constant and distribute multiplication

$$
\begin{gathered}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right)
\end{gathered}
$$

$$
\begin{gathered}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
& O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
& O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right) \quad \begin{array}{l}
\text { This is known to } \\
\text { converge to a constant }
\end{array} \\
& O\left(n \sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)
\end{aligned}
$$

$$
\begin{gathered}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)=O(n)
\end{gathered}
$$

$$
\begin{gathered}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)=O(n)
\end{gathered}
$$

