
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Heaps
Textbook Ch. 18

mailto:epmikida@buffalo.edu

Announcements

● WA2 due Sunday

PriorityQueue ADT

PriorityQueue[A <:Ordering]

enqueue(v: A): Unit
Insert value v into the priority queue

dequeue: A
Remove the greatest element in the priority queue

head: A
Peek at the greatest element in the priority queue

Priority Queues

Two mentalities…

Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized ("Insertion Sort")

Priority Queues

Operation Lazy Proactive

enqueue O(1) O(n)

dequeue O(n) O(1)

head O(n) O(1)

Priority Queues

Operation Lazy Proactive

enqueue O(1) O(n)

dequeue O(n) O(1)

head O(n) O(1)

Can we do better?

Priority Queues

Lazy - Fast Enqueue, Slow Dequeue

Proactive - Slow Enqueue, Fast Dequeue

??? - Fast(-ish) Enqueue, Fast(-ish) Dequeue

Priority Queues

Lazy - Fast Enqueue, Slow Dequeue

Proactive - Slow Enqueue, Fast Dequeue

??? - Fast(-ish) Enqueue, Fast(-ish) Dequeue

Priority Queues

Idea: Keep the priority queue "kinda" sorted.

Hopefully "kinda" sorted is cheaper to maintain than a full sort,

but still gives us some of the benefits.

Priority Queues

Idea: Keep the priority queue "kinda" sorted.

Keep larger items towards the front of the list,

and keep the front of the list more sorted than the back…

Binary Heaps

Challenge: If we are only "kinda" sorting, how do we know which elements
are actually sorted?

Binary Heaps

Idea: Organize the priority queue as a directed tree!

A directed edge from a to b means that a ≥ b

More Tree Terminology

Child - An adjacent node connected by an out-edge

More Tree Terminology

Child - An adjacent node connected by an out-edge

Leaf - A node with no children

More Tree Terminology

Child - An adjacent node connected by an out-edge

Leaf - A node with no children

Depth (of a node) - The number of edges from the root to the node

More Tree Terminology

Child - An adjacent node connected by an out-edge

Leaf - A node with no children

Depth (of a node) - The number of edges from the root to the node

Depth (of a tree) - The maximum depth of any node in the tree

More Tree Terminology

Child - An adjacent node connected by an out-edge

Leaf - A node with no children

Depth (of a node) - The number of edges from the root to the node

Depth (of a tree) - The maximum depth of any node in the tree

Level (of a node) - depth + 1

More Tree Terminology

A

B C

D

E F

A is the root

B and C are children of A
D is a child of C
E and F are children of D

B, E and F are leaves

The depth of A is 0, B and C: 1, D: 2, E and F: 3

The depth of the tree is 3

Binary Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≥ b

Binary Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≥ b

Binary: Max out-degree of 2 (easy to reason about)

Binary Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≥ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Binary Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≥ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

Binary Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≥ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

This makes it easy to encode into an array (later today)

Max Heaps

If we use ≥ as our ordering operation, we have a Max Heap

(as compared to a Min Heap)

Valid Max Heaps

31

20 4

105 2 1

5

5 4

22 2 1

1

10

9 8

67 5

Invalid Max Heaps

99

20 50

5 10 30

8

7 6

45 3

2

10

6 7

98 5

Invalid Max Heaps

99

20 50

5 10 30

8

7 6

45 3

2

10

6 7

98 5

Need to fill from left to right

Invalid Max Heaps

99

20 50

5 10 30

8

7 6

45 3

2

10

6 7

98 5

Need to fill from left to right Need complete levels

Invalid Max Heaps

99

20 50

5 10 30

8

7 6

45 3

2

10

6 7

98 5

Need to fill from left to right Need complete levels Children must be less than or
equal to parents

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i items

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i items

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i items

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i items

Heaps

What is the depth of a binary heap containing n items?

Level 1: holds up to 1 item

Level 2: holds up to 2 items

Level 3: holds up to 4 items

Level 4: holds up to 8 items

…

Level i: holds up to 2i-1 items

Heaps

What is the depth of a binary heap containing n items?

Heaps

What is the depth of a binary heap containing n items?

The Heap ADT

enqueue(elem: A): Unit [AKA pushHeap]
Place an item into the heap

dequeue: A [AKA popHeap]
Remove and return the maximal element from the heap

head: A
Peek at the maximal element in the heap

length: Int
The number of elements in the heap

Heap.enqueue

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current > parent

a. Swap current with parent
b. Repeat with current ← parent

Heap.enqueue

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current > parent

a. Swap current with parent
b. Repeat with current ← parent

Heap.enqueue

10

5 4

22 2 1

1

What if we enqueue 6?

Heap.enqueue

10

5 4

22 2 1

1

What if we enqueue 6?

Place in the next available
spot

6

Heap.enqueue

10

5 4

26 2 1

1

What if we enqueue 6?

Swap with parent if it is
bigger than the parent

2

Heap.enqueue

10

6 4

25 2 1

1

What if we enqueue 6?

Continue swapping
upwards…

2

Heap.enqueue

10

6 4

25 2 1

1

What if we enqueue 6?

Stop swapping when we
are no longer bigger than
our parent

2

✓

Heap.enqueue - fixUp

def fixUp[A: Ordering](current: Vertex[A]): Unit = {
 if(current.parent.isDefined){
 val parent = current.parent.get
 if(Ordering[A].lt(parent.value, current.value)){
 swap(current.value, parent.value)
 fixUp(parent)
 }
 }
}

Heap.enqueue - fixUp

What is the complexity (or how many swaps occur)?

def fixUp[A: Ordering](current: Vertex[A]): Unit = {
 if(current.parent.isDefined){
 val parent = current.parent.get
 if(Ordering[A].lt(parent.value, current.value)){
 swap(current.value, parent.value)
 fixUp(parent)
 }
 }
}

Heap.enqueue - fixUp

What is the complexity (or how many swaps occur)? O(log(n))

def fixUp[A: Ordering](current: Vertex[A]): Unit = {
 if(current.parent.isDefined){
 val parent = current.parent.get
 if(Ordering[A].lt(parent.value, current.value)){
 swap(current.value, parent.value)
 fixUp(parent)
 }
 }
}

Heap.dequeue

Heap.dequeue

Idea: Replace root with the last element then fix the heap

1. Start with current ← root
2. While current has a child > current

a. Swap current with its largest child
b. Repeat with current ← child

Heap.dequeue

Idea: Replace root with the last element then fix the heap

1. Start with current ← root
2. While current has a child > current

a. Swap current with its largest child
b. Repeat with current ← child

Heap.dequeue

10

6 4

25 2 1

1

What if we call dequeue?

2

Heap.dequeue 6 4

25 2 1

1

What if we call dequeue?

Remove and return the
root

2

Heap.dequeue

2

6 4

25 2 1

1

What if we call dequeue?

Make the last item the
new root

Heap.dequeue

2

6 4

25 2 1

1

What if we call dequeue?

Check for our largest child

Heap.dequeue

6

2 4

25 2 1

1

What if we call dequeue?

If the largest child is
bigger than us, swap

Heap.dequeue

6

2 4

25 2 1

1

What if we call dequeue?

Continue swapping down
the tree as necessary…

Heap.dequeue

6

5 4

22 2 1

1

What if we call dequeue?

Continue swapping down
the tree as necessary…

Heap.dequeue

6

5 4

22 2 1

1

What if we call dequeue?

Stop swapping when our
children are no longer
bigger ✓

Heap.dequeue - fixDown

def fixDown[A: Ordering](current: Vertex[A]): Unit = {
 val maxChild = getMaxChildOf(current)
 if(maxChild.isDefined) {
 val max = maxChild.get
 if(Ordering[A].lt(current.value, max.value)){
 swap(current.value, max.value);
 fixDown(max)
 }
 }
}

Heap.dequeue - fixDown

What is the complexity (or how many swaps occur)?

def fixDown[A: Ordering](current: Vertex[A]): Unit = {
 val maxChild = getMaxChildOf(current)
 if(maxChild.isDefined) {
 val max = maxChild.get
 if(Ordering[A].lt(current.value, max.value)){
 swap(current.value, max.value);
 fixDown(max)
 }
 }
}

Heap.dequeue - fixDown

What is the complexity (or how many swaps occur)? O(log(n))

def fixDown[A: Ordering](current: Vertex[A]): Unit = {
 val maxChild = getMaxChildOf(current)
 if(maxChild.isDefined) {
 val max = maxChild.get
 if(Ordering[A].lt(current.value, max.value)){
 swap(current.value, max.value);
 fixDown(max)
 }
 }
}

Priority Queues

Operation Lazy Proactive Heap

enqueue O(1) O(n) O(log(n))

dequeue O(n) O(1) O(log(n))

head O(n) O(1) O(1)

Storing heaps

Notice that:
1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?

Storing heaps

Notice that:
1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?

Idea: Use an ArrayBuffer

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10 6 4

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10 6 4 5 2 2 1

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10 6 4 5 2 2 1 1 2

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10 6 4 5 2 2 1 1 2

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10 6 4 5 2 2 1 1 2 4

4

Enqueue always inserts at the
arrays end (then we fixup)

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (worst-case O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: amortized O(n log(n)) (worst-case O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: amortized O(n log(n)) (worst-case O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(n log(n)) (worst-case O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(n log(n))
● Total: worst-case O(n log(n))

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: worst-case O(n log(n))

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: worst-case O(log(n))

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 4

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 4

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 4 8

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 4 8

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7 2

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7 2

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7 2 5

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7 2 5

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3 9

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3 9

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 9 2 4 3 7

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 9 2 4 3 7

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

9 5 8 2 4 3 7

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

9 5 8 2 4 3 7

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 8 2 4 3 7

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 5 8 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 5 8 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

3 5 7 2 4

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

3 5 7 2 4

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 5 3 2 4

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 3 2 4

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

4 5 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

4 5 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 4 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 4 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

4 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

4 2 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

Heap Sort

Enqueue element i: O(log(i))

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

Heap.update

6

5 4

22 2 1

1

What if we change the
value of the 5 node to 0?

Heap.update

6

0 4

22 2 1

1

We now have to fixUp or
fixDown based on the
new value

Heap.update

6

2 4

20 2 1

1

We now have to fixUp or
fixDown based on the
new value

Heap.update

6

2 4

21 2 1

0

We now have to fixUp or
fixDown based on the
new value

Heap.update

6

2 4

21 2 1

0

We now have to fixUp or
fixDown based on the
new value

✓

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

Heapify

Input: Array

Output: Array re-ordered to be a heap

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array

Given the cost of fixUp and fixDown what do we expect the complexity
Heapify will be?

Heapify

6

4 7

108 2 1

Given an arbitrary array
(show as a tree here) turn
it into a heap

Heapify

6

4 7

108 2 1

Start at the lowest level,
and call fixDown on
each node (0 swaps per
node)

Heapify

6

4 7

108 2 1

Do the same at the next
lowest level (at most one
swap per node)

Heapify

6

10 7

48 2 1

Do the same at the next
lowest level (at most one
swap per node)

✓

Heapify

6

10 7

48 2 1

Continue upwards (now at
most 2 swaps per node)

Heapify

10

6 7

48 2 1

Continue upwards (now at
most 2 swaps per node)

Heapify

10

8 7

46 2 1

Continue upwards (now at
most 2 swaps per node)

Heapify

10

8 7

46 2 1

Continue upwards (now at
most 2 swaps per node)

Heapify

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

…

At level 1: Call fixDown on all 1 nodes at this level (max log(n) swaps each)

Heapify
Sum the number of swaps
required by each level

Heapify
Pull out the n as a
constant and distribute
multiplication

Heapify
Focus on the dominant
term only

Heapify
Change log(n) to infinity
(can only increase
complexity class if
anything)

Heapify
We can now treat the sum
as a constant

This is known to
converge to a constant

Heapify
Therefore we can heapify
an array of size n in O(n)

Heapify
Therefore we can heapify
an array of size n in O(n)

(but heap sort still
requires n log(n) due to
dequeue costs)

