CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Trees (and Sets and Bags)

Sets

A Set is an unordered collection of unique elements.
(order doesn't matter, and at most one copy of each item)

Sets

A Set is an unordered collection of unique elements.
(order doesn't matter, and at most one copy of each item key)

The mutable.Set[T] ADT

add(element: T) : Unit
Store one copy of element if not already present
apply(element: T) : Boolean
Return true if element is present in the set
remove (element: T) : Boolean
Remove element if present, or return false if not

Bags

A Bag is an unordered collection of non-unique elements. (order doesn't matter, and multiple copies with the same key is OK)

The mutable. Bag[T] ADT

add (element: T) : Unit
Register the presence of a new (copy of) element
apply (element: T): Integer
Return the number of copies of element in the bag
remove (element: T) : Boolean
Remove one copy of element if present, or return false if not

Collection ADTs

Property	Seq	Set	Bag
Explicit Order	\checkmark		
Enforced Uniqueness		\checkmark	
Iterable	\checkmark	\checkmark	\checkmark

(Rooted) Trees

(Even More) Tree Terminology

Rooted, Directed Tree - Has a single root node (node with no parents)
Parent of node \mathbf{X} - A node with an out-edge to X (max 1 parent per node)
Child of node X - A node with an in-edge from X
Leaf - A node with no children
Depth of node \mathbf{X} - The number of edges in the path from the root to X
Height of node \mathbf{X} - The number of edges in the path from \mathbf{X} to the deepest leaf

(Even More) Tree Terminology

Level of a node - Depth of the node +1
Size of a tree (\boldsymbol{n}) - The number of nodes in the tree
Height/Depth of a tree (d) - Height of the root/depth of the deepest leaf

(Even More) Tree Terminology

Binary Tree - Every vertex has at most 2 children
Complete Binary Tree - All leaves are in the deepest two levels
Full Binary Tree - All leaves are at the deepest level, therefore every vertex has exactly 0 or 2 children, and $\boldsymbol{d}=\boldsymbol{\operatorname { l o g }}(\boldsymbol{n})$

Quick Scala Tips

```
class TreeNode[T](
    var _value: T,
    var _left: Option[TreeNode[T]]
    var _right: Option[TreeNode[T]]
)
class Tree[T] {
    var root: Option[TreeNode[T]] = None // empty tree
}
```

We've seen how we can use options for objects that may not exist...

Quick Scala Tips

```
trait Tree [+T]
case class TreeNode[T](
    value: T,
    left: Tree[T],
    right: Tree[T]
) extends Tree[T]
case object FmptyTree extends Tree[Nothing]
```


But we can also use Traits and case classes...

Quick Scala Tips

```
trait Tree [+T]
case class TreeNode[T](
    value: T,
    left: Tree[T],
    right: Tree[T]
) extends Tree[T]
    TreeNode and FmptyTree are two cases of Tree
case object FmptyTree extends Tree[Nothingl
```

But we can also use Traits and case classes...

Case Classes/Objects

Case Classes/Objects have two important features:

1. Inline Constructors (no new):

TreeNode (10, EmptyTree, EmptyTree)
2. Match deconstructors:
foo match \{ case TreeNode (v, l, r) => ... \}

Case Classes/Objects

```
def printTree[T](root: ImmutableTree[T], indent: Int) = {
    root match {
    case TreeNode(v, left, right) =>
        print((" " * indent) + v)
    printTree(left, indent + 2)
    printTree(right, indent + 2)
    case EmptyTree =>
        /* Do Nothing */
    }
}
```


Case Classes/Objects

```
def printTree[T](root: ImmutableTree[T], indent: Int) = {
    root match {
        case TreeNode(v, left, right) =>
        print((" " * indent) + v)
        printTree(left, indent + 2)
        printTree(right, indent + 2)
        If root is a TreeNode with value v, and subtrees left and right, print \(v\), then call printTree on left and right
```

case EmptyTree =>

```
        /* Do Nothing */
    }
}
```


Case Classes/Objects

```
def printTree[T] (root: ImmutableTree[T], indent: Int) = {
    root match {
    case TreeNode(v, left, right) =>
        print((" " * indent) + v)
        printTree(left, indent + 2)
        printTree(right, indent + 2)
```

 case EmptyTree \(=>\)
 /* Do Nothing */
 If root is an EmptyTree then don't do
 anything
 \}

Computing Tree Height

The height of a tree is the height of the root

Computing Tree Height

The height of a tree is the height of the root
The children of the root are each roots of the left and right subtrees

Computing Tree Height

The height of a tree is the height of the root
The children of the root are each roots of the left and right subtrees
So we can compute height recursively:

$$
h(\text { root })= \begin{cases}0 & \text { if the tree is empty } \\ 1+\max (h(\text { root.left }), h(\text { root.right })) & \text { otherwise }\end{cases}
$$

Computing Tree Height

```
def height[T](root: Tree[T]): Int = {
    root match {
    case EmptyTree =>
        0
```

 case TreeNode (v, left, right) =>
 1 + Math.max (height(left) , height(right))
 \}

$$
h(\text { root })=\left\{\begin{array}{l}
0 \\
1+\max (h(\text { root.left }), h(\text { root.right }))
\end{array}\right.
$$

if the tree is empty otherwise

Computing Tree Height

```
def height[T](root: Tree[T]): Int = {
    root match {
    case EmptyTree =>
        0
```

Case classes have a nice mapping onto functions with multiple cases
case TreeNode (v, left, right) =>
1 + Math.max (height(left), height(right))
\}

$$
h(\text { root })=\left\{\begin{array}{l}
0 \\
1+\max (h(\text { root.left }), h(\text { root.right }))
\end{array}\right.
$$

if the tree is empty otherwise

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node \boldsymbol{X} in the left subtree of node $\boldsymbol{X}: \boldsymbol{X}_{\boldsymbol{L}}$.key $<\boldsymbol{X}$.key

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node \boldsymbol{X}_{L} in the left subtree of node \boldsymbol{X} : $\boldsymbol{X}_{L} \cdot$ key $<\boldsymbol{X}$.key
- For every node $\boldsymbol{X}_{\boldsymbol{R}}$ in the right subtree of node $\boldsymbol{X}: \boldsymbol{X}_{\boldsymbol{R}}$. key $>\boldsymbol{X}$.key

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node \boldsymbol{X}_{L} in the left subtree of node $\boldsymbol{X}: \boldsymbol{X}_{L} \cdot$ key $<\boldsymbol{X}$.key
- For every node $\boldsymbol{X}_{\boldsymbol{R}}$ in the right subtree of node $\boldsymbol{X}: \boldsymbol{X}_{R}$.key $>\boldsymbol{X}$.key
X partitions its children

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root. value have key \boldsymbol{k} ? (if yes, done!)

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root.value have key \boldsymbol{k} ? (if yes, done!)
3. Is \boldsymbol{k} less than root. value's key? (if yes, search left subtree)

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root. value have key \boldsymbol{k} ? (if yes, done!)
3. Is \boldsymbol{k} less than root. value's key? (if yes, search left subtree)
4. Is \boldsymbol{k} greater than root. value's key? (If yes, search the right subtree)

find

```
def find[V: Ordering] (root: BST[V], target: V): Option[V] =
    root match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v )) { return find(left, target) }
        else if(Ordering[V].lt( v, target )) { return find(right, target) }
        else
                            { return Some(v) }
    case EmptyTree =>
        return None
    }
```


find

```
def find[V: Ordering] (root: BST[V], target: V): Option[V] =
    root match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v )) { return find(left, target) }
        else if(Ordering[V].lt( v, target )) { return find(right, target) }
        else { return Some(v) }
    case EmptyTree =>
        return None
    }
```

What's the complexity?

find

```
def find[V: Ordering] (root: BST[V], target: V): Option[V] =
    root match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v )) { return find(left, target) }
        else if(Ordering[V].lt( v, target )) { return find(right, target) }
        else { return Some(v) }
    case EmptyTree =>
        return None
    }
```

What's the complexity? (how many times do we call find)?

find

```
def find[V: Ordering] (root: BST[V], target: V): Option[V] =
    root match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v )) { return find(left, target) }
        else if(Ordering[V].lt( v, target )) { return find(right, target) }
        else { return Some(v) }
    case EmptyTree =>
        return None
    }
```

What's the complexity? (how many times do we call find)? O(d)

Inserting an Item

Goal: Insert a new item with key \boldsymbol{k} in a BST rooted at root

Inserting an Item

Goal: Insert a new item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (insert here)

Inserting an Item

Goal: Insert a new item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (insert here)
2. Does root. value have key \boldsymbol{k} ? (already present! don't insert)

Inserting an Item

Goal: Insert a new item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (insert here)
2. Does root. value have key \boldsymbol{k} ? (already present! don't insert)
3. Is \boldsymbol{k} less than root. value's key? (call insert on left subtree)

Inserting an Item

Goal: Insert a new item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (insert here)
2. Does root. value have key \boldsymbol{k} ? (already present! don't insert)
3. Is \boldsymbol{k} less than root. value's key? (call insert on left subtree)
4. Is \boldsymbol{k} greater than root.value's key? (call insert on right subtree)

insert

def insert[V: Ordering] (root: BST[V], value: V): BST[V] = node match \{
case TreeNode(v, left, right) =>
if (Ordering[V].lt(target, v)) \{
return TreeNode (v, insert(left, target), right)
\} else if(Ordering[V].lt(v, target)) \{
return TreeNode(v, left, insert(right, target))
\} else \{
return node // already present
\}
case EmptyTree =>
return TreeNode (value, EmptyTree, EmptyTree)
\}

insert

def insert[V: Ordering] (root: BST[V], value: V): BST[V] = node match \{
case TreeNode(v, left, right) =>
if (Ordering[V].lt(target, v)) \{
return TreeNode (v, insert(left, target), right)
\} else if(Ordering[V].lt(v , target)) \{
return TreeNode(v, left, insert(right, target))
\} else \{
return node // already present What is the complexity?
\}
(how many calls to insert)?
case EmptyTree =>
return TreeNode (value, EmptyTree, EmptyTree)
\}

insert

```
def insert[V: Ordering](root: BST[V], value: V): BST[V] =
    node match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v ) ) {
            return TreeNode(v, insert(left, target), right)
        } else if(Ordering[V].lt( v, target ) ) {
        return TreeNode(v, left, insert(right, target))
        } else {
        return node // already present What is the complexity?
    (how many calls to insert)? O(d)
    case EmptyTree =>
        return TreeNode(value, EmptyTree, EmptyTree)
    }
```


Remove

Goal: Remove the item with key \boldsymbol{k} from a BST rooted at root

1. find the iterm
2. Replace the found node with the right subtree
3. Insert the left subtree under the right

We'll look at this in more detail later, but for now... What's the complexity? O(d)

Sets and Bags

So we could use this specification of a BST to implement a Set What about bags? How could we change our BST to implement a Bag?

Sets and Bags

So we could use this specification of a BST to implement a Set
What about bags? How could we change our BST to implement a Bag?
Idea 1: Allow multiple copies ($X_{L} \leq X$ instead of $<$)

Sets and Bags

So we could use this specification of a BST to implement a Set
What about bags? How could we change our BST to implement a Bag?
Idea 1: Allow multiple copies ($X_{L} \leq X$ instead of $<$)
Idea 2: Only store one copy of each element, but also store a count

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$

What is the runtime in terms of \boldsymbol{n} ?

BST Operations

Operation
find
insert
remove
What is the runtime in terms of n ? $O(n)$

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$
What is the runtime in terms of $n ? O(n)$	
Does it need to be that bad?	

