CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Trees (and Sets and Bags)

A <u>Set</u> is an <u>unordered</u> collection of <u>unique</u> elements.

(order doesn't matter, and at most one copy of each item)

A <u>Set</u> is an <u>unordered</u> collection of <u>unique</u> elements.

(order doesn't matter, and at most one copy of each item key)

The mutable.Set[T] ADT

```
add(element: T): Unit
```

Store one copy of **element** if not already present

```
apply(element: T): Boolean
```

Return true if **element** is present in the set

```
remove(element: T): Boolean
```

Remove **element** if present, or return false if not

A **<u>Bag</u>** is an <u>unordered</u> collection of <u>non-unique</u> elements.

(order doesn't matter, and multiple copies with the same key is OK)

The mutable.Bag[T] ADT

add(element: T): Unit

Register the presence of a new (copy of) element

apply(element: T): Integer

Return the number of copies of **element** in the bag

remove(element: T): Boolean

Remove one copy of element if present, or return false if not

Collection ADTs

Property	Seq	Set	Bag
Explicit Order	1		
Enforced Uniqueness		1	
Iterable	1	1	1

(Rooted) Trees

(Even More) Tree Terminology

- **<u>Rooted, Directed Tree</u>** Has a single root node (node with no parents)
- **<u>Parent</u> of node X** A node with an out-edge to X (max 1 parent per node)
- **<u>Child</u> of node X** A node with an in-edge from X
- Leaf A node with no children
- Depth of node X The number of edges in the path from the root to X
- Height of node X The number of edges in the path from X to the deepest leaf

(Even More) Tree Terminology

Level of a node - Depth of the node + 1

Size of a tree (n) - The number of nodes in the tree

Height/Depth of a tree (d) - Height of the root/depth of the deepest leaf

(Even More) Tree Terminology

Binary Tree - Every vertex has at most 2 children

<u>Complete Binary Tree</u> - All leaves are in the deepest two levels

<u>Full Binary Tree</u> - All leaves are at the deepest level, therefore every vertex has exactly 0 or 2 children, and d = log(n)

Quick Scala Tips

```
class TreeNode[T](
  var _value: T,
  var _left: Option[TreeNode[T]]
  var _right: Option[TreeNode[T]]
)
class Tree[T] {
  var root: Option[TreeNode[T]] = None // empty tree
}
```

We've seen how we can use options for objects that may not exist...

Quick Scala Tips

trait Tree[+T]

```
case class TreeNode[T](
  value: T,
  left: Tree[T],
  right: Tree[T]
) extends Tree[T]
```

case object EmptyTree extends Tree[Nothing]

But we can also use Traits and case classes...

Quick Scala Tips

trait Tree[+T]

```
case class TreeNode[T](
  value: T,
  left: Tree[T],
  right: Tree[T]
) extends Tree[T]
```

TreeNode and EmptyTree are two cases of Tree

case object EmptyTree <a>extends Tree[Nothing]

But we can also use Traits and case classes...

Case Classes/Objects have two important features:

 Inline Constructors (no new): TreeNode (10, EmptyTree, EmptyTree)
 Match deconstructors:

foo match { case TreeNode(v, l, r) => ... }

```
def printTree[T](root: ImmutableTree[T], indent: Int) = {
  root match {
    case TreeNode(v, left, right) =>
    print((" " * indent) + v)
    printTree(left, indent + 2)
    printTree(right, indent + 2)
    case EmptyTree =>
```

```
/* Do Nothing */
```

def printTree[T](root: ImmutableTree[T], indent: Int) = {
 root match {

case TreeNode(v, left, right) =>
 print((" " * indent) + v)
 printTree(left, indent + 2)
 printTree(right, indent + 2)

If root is a TreeNode with value v, and subtrees left and right, print v, then call printTree on left and right

```
case EmptyTree =>
    /* Do Nothing */
```

```
def printTree[T](root: ImmutableTree[T], indent: Int) = {
  root match {
    case TreeNode(v, left, right) =>
      print((" " * indent) + v)
      printTree(left, indent + 2)
      printTree(right, indent + 2)
```


If root is an EmptyTree then don't do anything

The height of a tree is the height of the root

The height of a tree is the height of the root

The children of the root are each roots of the left and right subtrees

The height of a tree is the height of the root

The children of the root are each roots of the left and right subtrees

So we can compute height recursively:

$$h(root) = \begin{cases} 0 & \text{if the tree is empty} \\ 1 + max(h(\texttt{root.left}), h(\texttt{root.right})) & \text{otherwise} \end{cases}$$

```
def height[T](root: Tree[T]): Int = {
  root match {
    case EmptyTree =>
    0
    case TreeNode(v, left, right) =>
    1 + Math.max( height(left), height(right) )
}
```

```
h(root) = \begin{cases} 0 & \text{if the tree is empty} \\ 1 + max(h(\texttt{root.left}), h(\texttt{root.right})) & \text{otherwise} \end{cases}
```

1 + Math.max(height(left), height(right))

```
h(root) = \begin{cases} 0 & \text{if the tree is empty} \\ 1 + max(h(\texttt{root.left}), h(\texttt{root.right})) & \text{otherwise} \end{cases}
```

A <u>Binary Search Tree</u> is a Binary Tree in which each node stores a unique key, and the keys are ordered.

A <u>Binary Search Tree</u> is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

A <u>Binary Search Tree</u> is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

• No duplicate keys

A **<u>Binary Search Tree</u>** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node X₁ in the left subtree of node X: X₁.key < X.key

A **<u>Binary Search Tree</u>** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node X, in the left subtree of node X: X, .key < X.key
- For every node X_R in the right subtree of node X: X_R.key > X.key

A **<u>Binary Search Tree</u>** is a **Binary Tree** in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node X, in the left subtree of node X: X, .key < X.key
- For every node X_R in the right subtree of node X: X_R .key > X.key

X partitions its children

Goal: Find an item with key k in a BST rooted at root

1. Is **root** empty? (if yes, then the item is not here)

- 1. Is **root** empty? (if yes, then the item is not here)
- 2. Does **root.value** have key **k**? (if yes, done!)

- 1. Is **root** empty? (if yes, then the item is not here)
- 2. Does **root.value** have key **k**? (if yes, done!)
- 3. Is **k** less than **root.value**'s key? (if yes, search left subtree)

- 1. Is **root** empty? (if yes, then the item is not here)
- 2. Does **root.value** have key **k**? (if yes, done!)
- 3. Is **k** less than **root.value**'s key? (if yes, search left subtree)
- 4. Is **k** greater than **root.value**'s key? (If yes, search the right subtree)

find

```
def find[V: Ordering](root: BST[V], target: V): Option[V] =
  root match {
    case TreeNode(v, left, right) =>
    if(Ordering[V].lt( target, v )) { return find(left, target) }
    else if(Ordering[V].lt( v, target )){ return find(right, target) }
    else { return Some(v) }
```

```
case EmptyTree =>
  return None
```

find

```
def find[V: Ordering](root: BST[V], target: V): Option[V] =
  root match {
    case TreeNode(v, left, right) =>
    if(Ordering[V].lt( target, v )) { return find(left, target) }
    else if(Ordering[V].lt( v, target )){ return find(right, target) }
    else { return Some(v) }
    case EmptyTree =>
```

return None

What's the complexity?

find

```
def find[V: Ordering](root: BST[V], target: V): Option[V] =
  root match {
    case TreeNode(v, left, right) =>
    if(Ordering[V].lt( target, v )) { return find(left, target) }
    else if(Ordering[V].lt( v, target )){ return find(right, target) }
    else { return Some(v) }
    case EmptyTree =>
    return None
}
```

What's the complexity? (how many times do we call find)?

find

```
def find[V: Ordering](root: BST[V], target: V): Option[V] =
  root match {
    case TreeNode(v, left, right) =>
    if(Ordering[V].lt( target, v )) { return find(left, target) }
    else if(Ordering[V].lt( v, target )){ return find(right, target) }
    else { return Some(v) }
    case EmptyTree =>
    return None
```

What's the complexity? (how many times do we call find)? **O(d)**

Goal: Insert a new item with key k in a BST rooted at root

1. Is root empty? (insert here)

- 1. Is **root** empty? (insert here)
- 2. Does **root.value** have key **k**? (already present! don't insert)

- 1. Is **root** empty? (insert here)
- 2. Does **root.value** have key **k**? (already present! don't insert)
- 3. Is **k** less than **root.value**'s key? (call insert on left subtree)

- 1. Is **root** empty? (insert here)
- 2. Does **root.value** have key **k**? (already present! don't insert)
- 3. Is **k** less than **root.value**'s key? (call insert on left subtree)
- 4. Is **k** greater than **root.value**'s key? (call insert on right subtree)

insert

```
def insert[V: Ordering](root: BST[V], value: V): BST[V] =
  node match {
    case TreeNode(v, left, right) =>
      if(Ordering[V].lt( target, v ) ){
        return TreeNode(v, insert(left, target), right)
      } else if(Ordering[V].lt( v, target ) ){
        return TreeNode(v, left, insert(right, target))
      } else {
        return node // already present
    case EmptyTree =>
      return TreeNode (value, EmptyTree, EmptyTree)
```

insert

```
def insert[V: Ordering] (root: BST[V], value: V): BST[V] =
 node match {
    case TreeNode(v, left, right) =>
      if(Ordering[V].lt( target, v ) ){
        return TreeNode(v, insert(left, target), right)
      } else if(Ordering[V].lt( v, target ) ){
        return TreeNode(v, left, insert(right, target))
      } else {
        return node // already present
                                            What is the complexity?
                                            (how many calls to insert)?
    case EmptyTree =>
      return TreeNode(value, EmptyTree, EmptyTree)
```

insert

```
def insert[V: Ordering] (root: BST[V], value: V): BST[V] =
 node match {
    case TreeNode(v, left, right) =>
      if(Ordering[V].lt( target, v ) ){
        return TreeNode(v, insert(left, target), right)
      } else if(Ordering[V].lt( v, target ) ){
        return TreeNode(v, left, insert(right, target))
      } else {
        return node // already present
                                            What is the complexity?
                                            (how many calls to insert)? O(d)
    case EmptyTree =>
      return TreeNode(value, EmptyTree, EmptyTree)
```

Remove

Goal: Remove the item with key **k** from a BST rooted at **root**

- 1. **find** the iterm
- 2. Replace the found node with the right subtree
- 3. Insert the left subtree under the right

We'll look at this in more detail later, but for now...

What's the complexity? **O(d)**

Sets and Bags

So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?

Sets and Bags

So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?

Idea 1: Allow multiple copies (*X*, ≤ *X* instead of <)

Sets and Bags

So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?

Idea 1: Allow multiple copies (*X*, ≤ *X* instead of <)

Idea 2: Only store one copy of each element, but also store a count

Operation	Runtime
find	<i>O</i> (<i>d</i>)
insert	O (<i>d</i>)
remove	O (<i>d</i>)

Operation	Runtime
find	<i>O</i> (<i>d</i>)
insert	<i>O</i> (<i>d</i>)
remove	<i>O</i> (<i>d</i>)

What is the runtime in terms of **n**?

Operation	Runtime
find	<i>O</i> (<i>d</i>)
insert	<i>O</i> (<i>d</i>)
remove	<i>O</i> (<i>d</i>)

What is the runtime in terms of **n**? **O**(**n**)

Operation	Runtime
find	<i>O</i> (<i>d</i>)
insert	<i>O</i> (<i>d</i>)
remove	<i>O</i> (<i>d</i>)

What is the runtime in terms of **n**? **O**(**n**)

Does it need to be that bad?