
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

AVL Trees

mailto:epmikida@buffalo.edu

Announcements

● PA3 Tests due tonight @11:59PM
● PA3 Implementation due Sunday @ 11:59PM

○ Recitation this week will have some PA3 related content again

BST Operations

What is the runtime in terms of n? O(n)

log(n) ≤ d ≤ n

Operation Runtime

find O(d)

insert O(d)

remove O(d)

Tree Depth vs Size

4

2 6

31 5 7

1

2

3

4

5

If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n)

Tree Depth vs Size

4

2 6

31 5 7

1

2

3

4

5

If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n)
We want this, not this

Keeping Depth Small - Two Approaches

Option 1

Keep tree balanced: subtrees +/-1
of each other in height

(add a field to track amount of
"imbalance")

Option 2

Keep leaves at some minimum
depth (d/2)

(Add a color to each node marking it
as "red" or "black")

Balanced Trees

Balanced Trees are good: Faster find, insert, remove

Balanced Trees

Balanced Trees are good: Faster find, insert, remove

What do we mean by balanced?

Balanced Trees

Balanced Trees are good: Faster find, insert, remove

What do we mean by balanced? |height(left) - height(right)| ≤ 1

Balanced Trees

Balanced Trees are good: Faster find, insert, remove

What do we mean by balanced? |height(left) - height(right)| ≤ 1

How do we keep a tree balanced?

Rebalancing Trees (rotations)

A

B

X Y Z

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child
A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes! A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity?

A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

This is called a left rotation

(right rotation is the opposite)

A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

This is called a left rotation

(right rotation is the opposite)

A

B

X Y Z

Rotate(A, B)

How does a rotation affect height?

Rebalancing Trees (rotations)

Before Rotation: A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

Before Rotation:
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

A

B

X Y Z

Rotate(A, B)

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation:
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation:

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation:
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation:
h(B) = 1+ max(1 + max(h(X),h(Y)), h(Z))

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B)

Before Rotation:
h(A) = 1 + max(h(X), 1 + max(h(Y), h(Z))

After Rotation:
h(B) = 1 + max(1 + max(h(X),h(Y)), h(Z))

● If X was the tallest of X,Y,Z our total
height increased by 1.

● If Z was the tallest our total height
decreased by 1.

● If X,Z same height, or Y is the tallest
then total is unchanged

AVL Trees

AVL Trees

An AVL tree (Adelson-Velsky and Landis) is a BST
where every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced: |height(root.left) - height(root.right)| ≤ 1

AVL Trees

Define balance(v) = height(v.right) - height(v.left)

Goal: Maintaining balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → "v is balanced"
● balance(v) = -1 → "v is left-heavy"
● balance(v) = 1 → "v is right-heavy"

AVL Trees

Define balance(v) = height(v.right) - height(v.left)

Goal: Maintaining balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → "v is balanced"
● balance(v) = -1 → "v is left-heavy"
● balance(v) = 1 → "v is right-heavy"

What does enforcing this gain us?

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

AVL Trees - Depth Bounds

Let minNodes(d) be the min number of nodes an in AVL tree of depth d

1 1

2 2

3

4

5

minNodes(0) = 1 minNodes(1) = 2 minNodes(2) = 4

AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

h = d-1
At least one subtree must have depth of d - 1
(because total depth is d)

AVL Trees - Depth Bounds

For any tree of depth d:
A

X
Y

d-2 ≤ h ≤ d-1

h = d-1
At least one subtree must have depth of d - 1
(because total depth is d)

The other subtree must have a depth of at
least d - 2 because the AVL constraint does
not allow it to differ by more than 1

AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)

AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)

This is the Fibonacci Sequence!

AVL Tree - Depth Bounds

For d < 1:

minNodes(d) = 1 + minNodes(d - 1) + minNodes(d - 2)

This is the Fibonacci Sequence!

What is the dth term of the Fibonacci sequence?

Coarse approximation: minNodes(d) = 𝛀(1.5d)

https://en.wikipedia.org/wiki/Fibonacci_sequence

https://en.wikipedia.org/wiki/Fibonacci_sequence

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

All constants

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

Therefore if we enforce the AVL
constraint, then a tree with n nodes

will have logarithmic depth

AVL Tree - Depth Bounds

minNodes(d) = 𝛀(1.5d)

Therefore if we enforce the AVL
constraint, then a tree with n nodes

will have logarithmic depth

So how do we enforce the constraint?

Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node

Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node

Idea: Store height of each node at the node

Enforcing the AVL Constraint

● Computing balance() on the fly is expensive
○ balance() calls height() twice
○ Computing height() requires visiting every node

Idea: Store height of each node at the node

Better Idea: Just store the balance factor (only needs 2 bits)

Enforcing the AVL Constraint

class AVLNode[K,V](

 var key: K,

 var value: V,

 var parent: Option[AVLNode[K,V]],

 var left: Tree[K,V],

 var right: Tree[K,V],

 var isLeftHeavy : Boolean, // true if height(right) - height(left) == -1

 var isRightHeavy : Boolean, // true if height(right) - height(left) == 1

)

class AVLNode[K,V](

 var key: K,

 var value: V,

 var parent: Option[AVLNode[K,V]],

 var left: Tree[K,V],

 var right: Tree[K,V],

 var isLeftHeavy : Boolean, // true if height(right) - height(left) == -1

 var isRightHeavy : Boolean, // true if height(right) - height(left) == 1

)

Enforcing the AVL Constraint

Add fields to track balance, and update
them during insertion/removal

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove? Decreases by at most 1

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break
our AVL constraint?
● What is the effect on the height of insert? Increases by at most 1
● What is the effect on the height of remove? Decreases by at most 1

Therefore after an operation that modifies an AVL tree, the difference in
heights can be at most 2.

What are the exact ways this broken constraint might show up?

Enforcing the AVL Constraint: Case 1

A

B

X Y Z

balance = +2 (too right heavy)

balance = +1 (right heavy)

height = hheight = h - 1height = h - 1

How can we fix this?

Enforcing the AVL Constraint: Case 1

balance = ?

height = hheight = h - 1height = h - 1

How can we fix this? rotate(A,B)

A

B

X Y Z

balance = ?

Enforcing the AVL Constraint: Case 1

balance = 0 ✓

height = hheight = h - 1height = h - 1

How can we fix this? rotate(A,B)

A

B

X Y Z

balance = 0 ✓

Enforcing the AVL Constraint: Case 2

A

B

X Y Z

balance = +2 (too right heavy)

balance = 0 (balanced)

height = hheight = hheight = h - 1

How can we fix this?

Enforcing the AVL Constraint: Case 2

How can we fix this? rotate(A,B)balance = ?

height = hheight = hheight = h - 1

A

B

X Y Z

balance = ?

Enforcing the AVL Constraint: Case 2

How can we fix this? rotate(A,B)balance = 1 ✓

height = hheight = hheight = h - 1

A

B

X Y Z

balance = -1 ✓

Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?

Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?
Will just a single left rotation work?

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work? No

balance = 2 ✘

height = h - 1height = hheight = h - 1

A

B

X Y Z

balance = -1 ✓

Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?

Enforcing the AVL Constraint: Case 3

A

B

W X Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hxheight = h - 1

How can we fix this?

C

Y
height = hy

Height of C we know must be h

Therefore At least one of hx or hy must be h - 1

The other can also be h - 2, or h - 1

Enforcing the AVL Constraint: Case 3

A

B

W X Z

balance = +2 (too right heavy)

balance = +1 or +2

height = h - 1height = hxheight = h - 1

How can we fix this?
Rotate right first: rotate(B,C)

C

Y
height = hy

Height of C we know must be h

Therefore At least one of hx or hy must be h - 1

The other can also be h - 2, or h - 1

Enforcing the AVL Constraint: Case 3

A B

W X Z

balance = ?

balance = ?

height = h - 1height = hxheight = h - 1

How can we fix this?
Rotate right first: rotate(B,C)
Then right left: rotate(A,C)

C

Y
height = hy

Height of C we know must be h

Therefore At least one of hx or hy must be h - 1

The other can also be h - 2, or h - 1

balance = ?

Enforcing the AVL Constraint: Case 3

A B

W X Z

balance = 0 ✓

balance = 0 or +1 ✓

height = h - 1height = hxheight = h - 1

How can we fix this?
Rotate right first: rotate(B,C)
Then right left: rotate(A,C)

C

Y
height = hy

Height of C we know must be h

Therefore At least one of hx or hy must be h - 1

The other can also be h - 2, or h - 1

balance = 0 or -1 ✓

Enforcing the AVL Constraint

● If too right heavy (balance == +2)
○ If right child is right heavy (balance == +1) or balanced (balance == 0)

■ rotate left around the root
○ If right child is left heavy (balance == -1)

■ rotate right around root of right child, then rotate left around root
● If too left heavy (balance == -2)

○ Same as above but flipped

Therefore if we have a balance factor that is off, but all children are
AVL trees, we can fix the balance factor in at most 2 rotations

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST)
2. Insert the new leaf and set balance factor to 0
3. Trace path back up to root and update balance factors

a. If a balance factor becomes +/-2 then rotate to fix

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST) O(d) = O(log n)
2. Insert the new leaf and set balance factor to 0 O(1)
3. Trace path back up to root and update balance factors O(d) = O(log n)

a. If a balance factor becomes +/-2 then rotate to fix O(1)

Inserting Records

def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
 var node = findInsertionPoint(key, root)
 node._key = key; node._value = value
 node._isLeftHeavy = node._isRightHeavy = false
 while(node._parent.isDefined){
 if(node._parent._left == node){
 if(node._parent._isRightHeavy){
 node._parent._isRightHeavy = false; return
 } else if(node._parent._isLeftHeavy) {
 if(node._isLeftHeavy){ node._parent.rotateRight() }
 else { node._parent.rotateLeftRight() }
 return
 } else {
 node._parent.isLeftHeavy = true
 }
 } else { /* symmetric to above */ }
 node = node._parent
 }
}

Inserting Records

def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
 var node = findInsertionPoint(key, root)
 node._key = key; node._value = value
 node._isLeftHeavy = node._isRightHeavy = false
 while(node._parent.isDefined){
 if(node._parent._left == node){
 if(node._parent._isRightHeavy){
 node._parent._isRightHeavy = false; return
 } else if(node._parent._isLeftHeavy) {
 if(node._isLeftHeavy){ node._parent.rotateRight() }
 else { node._parent.rotateLeftRight() }
 return
 } else {
 node._parent.isLeftHeavy = true
 }
 } else { /* symmetric to above */ }
 node = node._parent
 }
}

Find insertion point and create the new
leaf O(d) = O(log n)

Inserting Records

def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
 var node = findInsertionPoint(key, root)
 node._key = key; node._value = value
 node._isLeftHeavy = node._isRightHeavy = false
 while(node._parent.isDefined){
 if(node._parent._left == node){
 if(node._parent._isRightHeavy){
 node._parent._isRightHeavy = false; return
 } else if(node._parent._isLeftHeavy) {
 if(node._isLeftHeavy){ node._parent.rotateRight() }
 else { node._parent.rotateLeftRight() }
 return
 } else {
 node._parent.isLeftHeavy = true
 }
 } else { /* symmetric to above */ }
 node = node._parent
 }
}

Find insertion point and create the new
leaf O(d) = O(log n)

O(d) = O(log n) iterations

Inserting Records

def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
 var node = findInsertionPoint(key, root)
 node._key = key; node._value = value
 node._isLeftHeavy = node._isRightHeavy = false
 while(node._parent.isDefined){
 if(node._parent._left == node){
 if(node._parent._isRightHeavy){
 node._parent._isRightHeavy = false; return
 } else if(node._parent._isLeftHeavy) {
 if(node._isLeftHeavy){ node._parent.rotateRight() }
 else { node._parent.rotateLeftRight() }
 return
 } else {
 node._parent.isLeftHeavy = true
 }
 } else { /* symmetric to above */ }
 node = node._parent
 }
}

Find insertion point and create the new
leaf O(d) = O(log n)

O(d) = O(log n) iterations

O(1) per iteration

Removing Records

● Removal follows essentially the same process as insertion

