CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

AVL Trees

Announcements

- PA3 Tests due tonight @11:59PM
- PA3 Implementation due Sunday @ 11:59PM
- Recitation this week will have some PA3 related content again

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$
What is the runtime in terms of $n ? O(n)$	
$\log (n) \leq d \leq n$	

Tree Depth vs Size

If height(left) \approx height(right)

If height(left) < height(right)

Tree Depth vs Size

If height(left) \approx height(right)

If height(left) < height(right)

Keeping Depth Small - Two Approaches

Option 1

Keep tree balanced: subtrees +/-1 of each other in height
(add a field to track amount of "imbalance")

Option 2
Keep leaves at some minimum depth (d/2)
(Add a color to each node marking it as "red" or "black")

Balanced Trees

Balanced Trees are good: Faster find, insert, remove

Balanced Trees

Balanced Trees are good: Faster find, insert, remove What do we mean by balanced?

Balanced Trees

Balanced Trees are good: Faster find, insert, remove What do we mean by balanced? |height(left) - height(right)| ≤ 1

Balanced Trees

Balanced Trees are good: Faster find, insert, remove What do we mean by balanced? |height(left) - height(right)| ≤ 1 How do we keep a tree balanced?

Rebalancing Trees (rotations)

Rebalancing Trees (rotations)

Rotate(A, B)

Rebalancing Trees (rotations)

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child Is ordering maintained?

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child Is ordering maintained? Yes!

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child
Is ordering maintained? Yes!
Complexity?

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child Is ordering maintained? Yes!

Complexity? O(1)

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child Is ordering maintained? Yes!

Complexity? O(1)
This is called a left rotation
(right rotation is the opposite)

Rotate(A, B)

Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child Is ordering maintained? Yes!

Complexity? O(1)
How does a rotation affect height?
This is called a left rotation
(right rotation is the opposite)

Rebalancing Trees (rotations)

Before Rotation:

Rotate(A, B)

Rebalancing Trees (rotations)

> Before Rotation:
> $h(\mathrm{~A})=1+\max (\mathrm{h}(\mathrm{X}), 1+\max (\mathrm{h}(\mathrm{Y}), \mathrm{h}(\mathrm{Z}))$

Rotate(A, B)

Rebalancing Trees (rotations)

Before Rotation:

$h(A)=1+\max (h(X), 1+\max (h(Y), h(Z))$
After Rotation:

Rotate(A, B)

Rebalancing Trees (rotations)

Before Rotation:

$h(A)=1+\max (h(X), 1+\max (h(Y), h(Z))$
After Rotation:
$h(B)=1+\max (1+\max (h(X), h(Y)), h(Z))$

Rotate(A, B)

Rebalancing Trees (rotations)

Before Rotation:

$h(A)=1+\max (h(X), 1+\max (h(Y), h(Z))$

After Rotation:

$h(B)=1+\max (1+\max (h(X), h(Y)), h(Z))$

- If \mathbf{X} was the tallest of $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ our total height increased by 1 .
- If \mathbf{Z} was the tallest our total height decreased by 1 .
- If \mathbf{X}, \mathbf{Z} same height, or \mathbf{Y} is the tallest then total is unchanged

AVL Trees

AVL Trees

An AVL tree (Adelson-V्Velsky and Landis) is a BST where every subtree is depth-balanced Remember: Tree depth = height(root)

Balanced: |height(root.left) - height(root.right)| ≤ 1

AVL Trees

Define balance(v) = height(v.right) - height(v.Left)
Goal: Maintaining balance $(v) \in\{-1,0,1\}$

- balance $(v)=0 \quad \rightarrow$ " v is balanced"
- balance(v) = -1 \rightarrow " v is left-heavy"
- balance $(v)=1 \rightarrow$ " v is right-heavy"

AVL Trees

Define balance(v) = height(v.right) - height(v.Left)
Goal: Maintaining balance $(v) \in\{-1,0,1\}$

- balance $(v)=0 \quad \rightarrow$ " v is balanced"
- balance(v) = -1 \rightarrow " v is left-heavy"
- balance $(v)=1 \rightarrow$ " v is right-heavy"

What does enforcing this gain us?

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth? YES! Depth balance forces a maximum possible depth of $\log (n)$

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?
YES! Depth balance forces a maximum possible depth of $\log (n)$
Proof Idea: An AVL tree with depth \boldsymbol{d} has "enough" nodes

AVL Trees - Depth Bounds

Let minNodes (\boldsymbol{d}) be the min number of nodes an in AVL tree of depth \boldsymbol{d}
$\operatorname{minNodes}(0)=1$
1
$\operatorname{minNodes}(1)=2$

$\operatorname{minNodes}(2)=4$

AVL Trees - Depth Bounds

For any tree of depth \boldsymbol{d} :

AVL Trees - Depth Bounds

For any tree of depth \boldsymbol{d} :

At least one subtree must have depth of $\boldsymbol{d} \mathbf{- 1}$
(because total depth is \boldsymbol{d})

AVL Trees - Depth Bounds

For any tree of depth \boldsymbol{d} :

The other subtree must have a depth of at least \boldsymbol{d} - $\mathbf{2}$ because the AVL constraint does not allow it to differ by more than 1

$h=d-1$
At least one subtree must have depth of $\boldsymbol{d} \mathbf{- 1}$
(because total depth is \boldsymbol{d})

AVL Tree - Depth Bounds

For $\boldsymbol{d}<1$: $\operatorname{minNodes}(\boldsymbol{d})=1+\operatorname{minNodes}(\boldsymbol{d}-1)+\operatorname{minNodes}(\boldsymbol{d}-2)$

AVL Tree - Depth Bounds

For $\boldsymbol{d}<1$:
$\min \operatorname{Nodes}(\boldsymbol{d})=1+\operatorname{minNodes}(\boldsymbol{d}-\mathbf{1})+\operatorname{minNodes}(\boldsymbol{d}-\mathbf{2})$
This is the Fibonacci Sequence!

AVL Tree - Depth Bounds

For $\boldsymbol{d}<1$:
$\operatorname{minNodes}(\boldsymbol{d})=1+\operatorname{minNodes}(\boldsymbol{d}-\mathbf{1})+\operatorname{minNodes}(\boldsymbol{d}-\mathbf{2})$
This is the Fibonacci Sequence!
What is the $\boldsymbol{d}^{\text {th }}$ term of the Fibonacci sequence?
Coarse approximation: $\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\frac{\log _{2}\left(\frac{n}{c}\right)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\frac{\log _{2}\left(\frac{n}{c}\right)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\frac{\left.\log _{2}(n)\right)}{\log _{2}(1.5)}-\frac{\log _{2}(c)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\frac{\log _{2}\left(\frac{n}{c}\right)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
n \geq c 1.5^{d}
$$

$$
\frac{\log _{2}\left(\frac{n}{c}\right)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq \log _{2}\left(1.5^{d}\right)
$$

$$
\frac{\left.\log _{2}(n)\right)}{\log _{2}(1.5)}-\frac{\log _{2}(c)}{\log _{2}(1.5)} \geq d
$$

$$
\log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5)
$$

$$
d \in O\left(\log _{2}(n)\right)
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
\begin{aligned}
& n \geq c 1.5^{d} \begin{array}{c}
\log _{2}\left(\frac{n}{c}\right) \\
\begin{array}{c}
\text { Therefore if we enforce the AVL } \\
\text { constraint, then a tree with } n \text { nodes } \\
\text { will have logarithmic depth }
\end{array} \\
\log _{2}\left(\frac{n}{c}\right)
\end{array} \geq d \\
& \log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5) \\
& \log _{2}(1.5) \\
& \log _{2}(1.5)
\end{aligned} d .
$$

AVL Tree - Depth Bounds

$\operatorname{minNodes}(\boldsymbol{d})=\boldsymbol{\Omega}\left(1.5^{\boldsymbol{d}}\right)$

$$
\begin{aligned}
& n \geq c 1.5^{d} \begin{array}{c}
\log _{2}\left(\frac{n}{c}\right) \\
\begin{array}{c}
\text { Therefore if we enforce the AVL } \\
\text { constraint, then a tree with } n \text { nodes } \\
\text { will have logarithmic depth }
\end{array} \\
\log _{2}\left(\frac{n}{c}\right)
\end{array} \geq d \\
& \log _{2}\left(\frac{n}{c}\right) \geq d \log _{2}(1.5) \quad \begin{array}{l}
\text { So how do we enforce the constraint? }
\end{array} g_{2}(c) \\
& \log _{2}(1.5)
\end{aligned} d .
$$

Enforcing the AVL Constraint

- Computing balance() on the fly is expensive
- balance() calls height() twice
- Computing height() requires visiting every node

Enforcing the AVL Constraint

- Computing balance() on the fly is expensive
- balance() calls height() twice
- Computing height() requires visiting every node

Idea: Store height of each node at the node

Enforcing the AVL Constraint

- Computing balance() on the fly is expensive
- balance() calls height() twice
- Computing height() requires visiting every node

Idea: Store height of each node at the node
Better Idea: Just store the balance factor (only needs 2 bits)

Enforcing the AVL Constraint

```
class AVLNode[K,V](
    var key: K,
    var value: V,
    var parent: Option[AVLNode[K,V]],
    var left: Tree[K,V],
    var right: Tree[K,V],
    var isLeftHeavy : Boolean, // true if height(right) - height(left) == -1
    var isRightHeavy : Boolean, // true if height(right) - height(left) == 1
)
```


Enforcing the AVL Constraint

```
class AVLNode[K,V](
    var key: K,
    var value: V,
    var parent: Option[AVLNode[K,V]],
    var left: Tree[K,V],
    var right: Tree[K,V],
    var isLeftHeavy : Boolean, // true if height(right) - height(Left) == -1
    var isRightHeavy. Boolean, // true if height(right) - height(Left) == 1
)
```

Add fields to track balance, and update them during insertion/removal

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert? Increases by at most 1

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert? Increases by at most 1
- What is the effect on the height of remove?

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert? Increases by at most 1
- What is the effect on the height of remove? Decreases by at most 1

Enforcing the AVL Constraint

Assume we have a valid AVL tree and we modify it. How might this break our AVL constraint?

- What is the effect on the height of insert? Increases by at most 1
- What is the effect on the height of remove? Decreases by at most 1

Therefore after an operation that modifies an AVL tree, the difference in heights can be at most 2 .

What are the exact ways this broken constraint might show up?

Enforcing the AVL Constraint: Case 1

Enforcing the AVL Constraint: Case 1

Enforcing the AVL Constraint: Case 1

Enforcing the AVL Constraint: Case 2

Enforcing the AVL Constraint: Case 2

Enforcing the AVL Constraint: Case 2

Enforcing the AVL Constraint: Case 3

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work?

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work? No

Enforcing the AVL Constraint: Case 3

Enforcing the AVL Constraint: Case 3

How can we fix this?

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\boldsymbol{x}}$ or $\boldsymbol{h}_{\boldsymbol{y}}$ must be $\boldsymbol{h} \boldsymbol{- 1}$
The other can also be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint: Case 3

How can we fix this?
Rotate right first: rotate (B,C)

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\boldsymbol{x}}$ or $\boldsymbol{h}_{\boldsymbol{y}}$ must be $\boldsymbol{h} \mathbf{- 1}$
The other can also be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint: Case 3

Enforcing the AVL Constraint: Case 3

How can we fix this?
Rotate right first: rotate (B, C)
Then right left: rotate (A, C)

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\boldsymbol{x}}$ or $\boldsymbol{h}_{\boldsymbol{y}}$ must be $\boldsymbol{h} \mathbf{- 1}$
The other can also be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint

- If too right heavy (balance $==+2$)
- If right child is right heavy (balance $==+1$) or balanced (balance $==0$)
- rotate left around the root
- If right child is left heavy (balance $==-1$)
- rotate right around root of right child, then rotate left around root
- If too left heavy (balance ==-2)
- Same as above but flipped

Therefore if we have a balance factor that is off, but all children are AVL trees, we can fix the balance factor in at most 2 rotations

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST)
2. Insert the new leaf and set balance factor to 0
3. Trace path back up to root and update balance factors
a. If a balance factor becomes $+/-2$ then rotate to fix

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST)
2. Insert the new leaf and set balance factor to 0
3. Trace path back up to root and update balance factors a. If a balance factor becomes $+/-2$ then rotate to fix
$O(d)=O(\log n)$
O(1)
$O(d)=O(\log n)$ $0(1)$

Inserting Records

```
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
    var node = findInsertionPoint(key, root)
    node._key = key; node._value = value
    node._isLeftHeavy = node._isRightHeavy = false
    while(node._parent.isDefined){
        if(node._parent._left == node){
            if(node._parent._isRightHeavy){
            node._parent._isRightHeavy = false; return
            } else if(node._parent._isLeftHeavy) {
            if(node._isLeftHeavy)\overline{{ node._parent.rotateRight() }}
            else { node._parent.rotateLeftRight() }
                    return
            } else {
            node._parent.isLeftHeavy = true
            }
        } else { /* symmetric to above */ }
        node = node._parent
    }
}
```


Inserting Records

```
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
    var noae = TinalnsertionPoint(key, root)
    node._key = key; node._value = value
    node. isLeftHeavy = node. isRightHeavy = false
    while(node._parent.isDefined){
            if(node._parent._left == node){
            if(node._parent._isRightHeavy){
                    node._parent._isRightHeavy = false; return
            } else if(node._parent._isLeftHeavy) {
                    if(node._isLe\overline{ftHeavy)\overline{{ node._parent.rotateRight() }}}\mathbf{{}=\mp@code{l}
                    else { node._parent.rotateLeftRight() }
                    return
            } else {
            node._parent.isLeftHeavy = true
            }
        } else { /* symmetric to above */ }
        node = node._parent
    }
}
```


Inserting Records

```
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
    var noae = TinalnsertionPoint(key, root)
    node._key = key; node._value = value
    node. isLeftHeavy = node. isRightHeavy = false
    while(node._parent.isDefined){
                                    Find insertion point and create the new
    if(node._parent._left == node){
            if(node._parent._isRightHeavy){
                    node._parent._isRightHeavy = false; return
            } else if(node._parent._isLeftHeavy) {
                    if(node._isLe\overline{ftHeavy)\overline{{ node._parent.rotateRight() }}}\mathbf{{}\mathrm{ )}
                    else { node._parent.rotateLe\overline{ftRight() }}
                    return
            } else {
            node._parent.isLeftHeavy = true
            }
        } else { /* symmetric to above */ }
        node = node._parent
    }
}
```


Inserting Records

```
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
    var noae = Tinalnsertionpoint(key, root)
    node._key = key; node._value = value
    node. isLeftHeavy = node. isRightHeavy = false
    while(node._parent.isDefined){
                                    Find insertion point and create the new
leaf O(d)=O(log n)
                O(d)=O(\operatorname{log}n) iterations
            if(node._parent._left == node){
            if(node._parent._isRightHeavy){
                    node._parent._isRightHeavy = false; return
            } else if(node._parent._isLeftHeavy) {
                    if(node._isLe\overline{ftHeavy)\overline{{}}\mathrm{ node._parent.rotateRight() }}
                    else { node._parent.rotateLeftRight() }
                        O(1) per iteration
                    return
            } else {
            node._parent.isLeftHeavy = true
            }
            } else { /* symmetric to above */ }
            noae = noae._parent
    }
}
```


Removing Records

- Removal follows essentially the same process as insertion

