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BST Operations

What is the runtime in terms of n? O(n)

log(n) ≤ d ≤ n

Operation Runtime

find O(d)

insert O(d)

remove O(d)



AVL Trees

An AVL tree (Adelson-Velsky and Landis) is a BST
where every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced: |height(root.left) - height(root.right)| ≤ 1



AVL Trees

Define balance(v) = height(v.right) - height(v.left)

Goal: Maintaining balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → "v is balanced"
● balance(v) = -1 → "v is left-heavy"
● balance(v) = 1 → "v is right-heavy"



AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes



AVL Trees - Enforcing the Depth Bound

Key Observations:

● Adding a node to an AVL tree can increase subtree height by at most 1
● Removing a node can decrease subtree height by at most 1
● Both of these modifications only affect ancestors
● A rotation maintains ordering, and changes tree height by at most +/-1



Enforcing the AVL Constraint: Case 1

A

B

X Y Z

balance = +2 (too right heavy)

balance = +1 (right heavy)

height = hheight = h - 1height = h - 1

How can we fix this?



Enforcing the AVL Constraint: Case 1

balance = 0 ✓

height = hheight = h - 1height = h - 1

How can we fix this? rotate(A,B)

A

B

X Y Z

balance = 0 ✓



Enforcing the AVL Constraint: Case 2

A

B

X Y Z

balance = +2 (too right heavy)

balance = 0 (balanced)

height = hheight = hheight = h - 1

How can we fix this?



Enforcing the AVL Constraint: Case 2

How can we fix this? rotate(A,B)balance = 1 ✓

height = hheight = hheight = h - 1

A

B

X Y Z

balance = -1 ✓



Enforcing the AVL Constraint: Case 3

A

B

W X Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hxheight = h - 1

How can we fix this?

C

Y
height = hy

Height of C we know must be h

Therefore At least one of hx or hy must be h - 1

The other can also be h - 2, or h - 1



Enforcing the AVL Constraint: Case 3

A

B

W X Z

balance = +2 (too right heavy)

balance = +1 or +2

height = h - 1height = hxheight = h - 1

How can we fix this?
Rotate right first: rotate(B,C)

C

Y
height = hy

Height of C we know must be h

Therefore At least one of hx or hy must be h - 1

The other can also be h - 2, or h - 1



Enforcing the AVL Constraint: Case 3

A B

W X Z

balance = 0 ✓

balance = 0 or +1 ✓

height = h - 1height = hxheight = h - 1

How can we fix this?
Rotate right first: rotate(B,C)
Then right left: rotate(A,C)

C

Y
height = hy

Height of C we know must be h

Therefore At least one of hx or hy must be h - 1

The other can also be h - 2, or h - 1

balance = 0 or -1 ✓



Enforcing the AVL Constraint

● If too right heavy (balance == +2)
○ If right child is right heavy (balance == +1) or balanced (balance == 0)

■ rotate left around the root
○ If right child is left heavy (balance == -1)

■ rotate right around root of right child, then rotate left around root
● If too left heavy (balance == -2)

○ Same as above but flipped

Therefore if we have a balance factor that is off, but all children are 
AVL trees, we can fix the balance factor in at most 2 rotations



Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST) O(d) = O(log n)
2. Insert the new leaf and set balance factor to 0 O(1)
3. Trace path back up to root and update balance factors O(d) = O(log n)

a. If a balance factor becomes +/-2 then rotate to fix O(1)



Inserting Records

def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit = {
  var node = findInsertionPoint(key, root)
  node._key = key; node._value = value
  node._isLeftHeavy = node._isRightHeavy = false
  while(node._parent.isDefined){
    if(node._parent._left == node){
      if(node._parent._isRightHeavy){
        node._parent._isRightHeavy = false; return
      } else if(node._parent._isLeftHeavy) {
        if(node._isLeftHeavy){ node._parent.rotateRight() }
        else { node._parent.rotateLeftRight() }
        return
      } else {
        node._parent.isLeftHeavy = true
      }
    } else { /* symmetric to above */ }
    node = node._parent
  }
}

Find insertion point and create the new 
leaf O(d) = O(log n)

O(d) = O(log n) iterations

O(1) per iteration



AVL Tree

What was our initial goal?



AVL Tree

What was our initial goal? To constrain the depth of the tree



AVL Tree

What was our initial goal? To constrain the depth of the tree

How did we accomplish it?



AVL Tree

What was our initial goal? To constrain the depth of the tree

How did we accomplish it? By keeping the tree balanced
(subtree heights within 1 of each other)



AVL Tree

What was our initial goal? To constrain the depth of the tree

How did we accomplish it? By keeping the tree balanced
(subtree heights within 1 of each other)

This approach is indirect, and a bit more restrictive than it has to be



Maintaining Balance - Another Approach

Enforcing height-balance is too strict (May do “unnecessary” rotations)

Weaker (and more direct) restriction:
● Balance the depth of EmptyTree nodes
● If a, b are EmptyTree nodes, then enforce that for all a, b:

○ depth(a) ≥ (depth(b) ÷ 2)

or

○ depth(b) ≥ (depth(a) ÷ 2)



Depth Balancing

A

B C

D E F G

H I

J

5 5

4 4

3 3 3 3 3 3

Does this tree meet the depth constraints?



Depth Balancing

A

B C

D E F G

H I

J

5 5

4 4

3 3 3 3 3 3

EmptyTree nodes

This tree meets the constraints for EmptyTree 
node depth (3 ≥ 5/2) ✓

Does this tree meet the depth constraints? YES



Depth Balancing

A

B C

D E F

H I

J

5 5

4 4

3 3 3 3

2

Not OK! 

Does this tree meet the depth constraints?



Depth Balancing

A

B C

D E F

H I

J

5 5

4 4

3 3 3 3

2

Not OK! 

Does this tree meet the depth constraints? NO



Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d



Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

If no EmptyTree has depth less than d/2, then 
this part of the tree must be full. n ≥ 2d/2 nodes



Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

If no EmptyTree has depth less than d/2, then 
this part of the tree must be full. n ≥ 2d/2 nodes

log(n) ≥ d/2
2 log(n) ≥ d → d ∈ O(log(n))



Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

If no EmptyTree has depth less than d/2, then 
this part of the tree must be full. n ≥ 2d/2 nodes

log(n) ≥ d/2
2 log(n) ≥ d → d ∈ O(log(n))

Therefore enforcing these constraints means that 
tree depths is O(log(n))...

So how do we enforce them (efficiently)?



Red-Black Trees

To Enforce the Depth Constraint on EmptyTree nodes:

1. Color each node red or black
a. The # of black nodes from each EmptyTree node to root must be same
b. The parent of a red node must always be black

2. On insertion (or deletion)
a. Inserted nodes are red (won't break 1a)
b. Repair violations of 1b by rotating and/or recoloring

i. Make sure repairs don't break 1a



Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3



Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3

Label each EmptyTree with the number of black nodes 
along the path back to the root. All 3 in this case ✓



Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3

Label each EmptyTree with the number of black nodes 
along the path back to the root. All 3 in this case ✓

Confirm no red nodes have red parents ✓



Red-Black Trees

How does this coloring relate to our depth constraint?



Red-Black Trees

Assume we have a valid Red-Black tree with X black nodes from on each 
path from EmptyTree to root

What is the shallowest possible depth of an EmptyTree node?



Red-Black Trees

Assume we have a valid Red-Black tree with X black nodes from on each 
path from EmptyTree to root

What is the shallowest possible depth of an EmptyTree node?

X black nodes in a row = X



Red-Black Trees

Assume we have a valid Red-Black tree with X black nodes from on each 
path from EmptyTree to root

What is the shallowest possible depth of an EmptyTree node?

X black nodes in a row = X

What is the deepest possible depth of an EmptyTree node?



Red-Black Trees

Assume we have a valid Red-Black tree with X black nodes from on each 
path from EmptyTree to root

What is the shallowest possible depth of an EmptyTree node?

X black nodes in a row = X

What is the deepest possible depth of an EmptyTree node?

X black nodes with 1 red node between each one = 2X



Red-Black Trees

Now we have:

1. If we color nodes red and black with the rules described, then the 
shallowest EmptyTree will be at least half the depth of the deepest

2. If the shallowest EmptyTree is at least half the depth of the deepest 
then the depth of our tree is O(log(n))



Red-Black Trees

Now we have:

1. If we color nodes red and black with the rules described, then the 
shallowest EmptyTree will be at least half the depth of the deepest

2. If the shallowest EmptyTree is at least half the depth of the deepest 
then the depth of our tree is O(log(n))

So how do we build/color our tree?



Red-Black Tree

After insertion or deletion, what situations can we encounter?



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A
Triangles represent valid 
Red-Black tree fragments

Case 1a: Our root is red, we're all good! ✓



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A
Triangles represent valid 
Red-Black tree fragments

Case 1b: Our root is black, we're all good! ✓



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A Triangles represent valid 
Red-Black tree fragments

Case 2: The node we are checking is red…



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Triangles represent valid 
Red-Black tree fragments

Case 2: The node we are checking is red… 
and it's parent is black. We are all good! ✓

B



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3: The node we are checking is red… 
and it's parent is red. Now we have to fix the 
tree. B



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3a: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is red… B

C

D



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3a: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is red…

Recolor B,C,D. Are we all good?

B

C

D



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3a: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is red…

Recolor B,C,D. Are we all good?

B

C

D

The # of black nodes 
on every path remains 
unchanged! ✓

C's parent may be red. 
Move up and repeat 
this process! ✓



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3a: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is red…

Recolor B,C,D. Are we all good?

Note: This also works if A is right child of B 
and/or B is right child of C

B

C

D

The # of black nodes 
on every path remains 
unchanged! ✓

C's parent may be red. 
Move up and repeat 
this process! ✓



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3b: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is black… B

C

D



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3b: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is black…

Rotate(B,C)

B

C

D



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3b: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is black…

Rotate(B,C)

B

C

D

Same # of black 
nodes to the root 
from this part of 
tree

1 less black node 
to root for this part 
of the tree…



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3b: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is black…

Rotate(B,C)
Recolor(B,C)

B

C

D

Same # of black 
nodes to the root for 
whole subtree! ✓

No need to continue 
fixing, a black node 
can have any color 
parent! ✓



Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3c: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is black…but A is the 
right child of B

B

C

D



Red-Black Tree

After insertion or deletion, what situations can we encounter?

Case 3c: The node we are checking is red… 
and it's parent is red. That node's parent is 
black and it's sibling is black…but A is the 
right child of B

Rotate(B,A) now we are back to 3b A

B

C

D



Red-Black Tree

Note: Each insertion creates at most one red-red parent-child conflict
● O(1) time to recolor/rotate to repair the parent-child conflict
● May create a red-red conflict in grandparent

○ Up to d/2 = O(log(n)) repairs required, but each repair is O(1)
● Insertion therefore remains O(log(n))

Note: Each deletion removes at most one black node (red doesn't matter)
● O(1) time to recolor/rotate to preserve black-depth
● May require recoloring (grand-)parent from black to red

○ Up to d = O(log(n)) repairs required
● Deletion therefore remains O(log(n))


