
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Tree Wrap-Up and Hash Functions

mailto:epmikida@buffalo.edu


Announcements and Feedback

● PA3 Implementation due Sunday @ 11:59PM
● WA3 coming soon…will include PA3 wrap-up and tree questions



BST Operations

The tree operations on a BST are always O(d) (they involve a constant 
number of trips from root to leaf at most).

The balanced varieties (AVL and Red-Black) constrain the depth

Operation BST AVL Red-Black

find O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

insert O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

remove O(d) = O(n) O(d) = O(log n) O(d) = O(log n)



Constraining Tree Depth

AVL Trees

Keep tree balanced: subtrees +/-1 
of each other in height

● Add a field to track amount of 
"imbalance"

● If imbalance exceeds +/-1 
perform rotations to fix

Red-Black Trees

Keep leaves at some minimum 
depth (d/2)
● Add a color to each node 

marking it as "red" or "black"
a. Keep # of black nodes = on 

every path from leaf to root
b. Don't let red nodes have red 

parents
● If either rule is broken, rotate 

and recolor to fix



Example

12

5 32

2 13 17

3

4

35

1

Is this a valid AVL Tree?
A valid Red-Black Tree?



Example

12

5 32

2 13 17

3

4

35

1

Is this a valid AVL Tree? No
A valid Red-Black Tree? No

The 13 is larger than 12, but left of 12. Don't 
forget, AVL and Red-Black trees are both BSTs!



Example

12

5 32

2 8 17

3

4

35

1

Is this a valid AVL Tree?
A valid Red-Black Tree?



Example

12

5 32

2 8 17

3

4

35

1

Is this a valid AVL Tree? No
A valid Red-Black Tree?

b: 0

b: 0

b: 0 b: 0 b: 0

b: 0

b: 1

b: 1

b: -1

b: -2



Example

12

5 32

2 8 17

3

4

35

1

Is this a valid AVL Tree? No
A valid Red-Black Tree? Yes

b: 0

b: 0

b: 0 b: 0 b: 0

b: 0

b: 1

b: 1

b: -1

b: -2

← Depth = 5

← Depth = 2



Example

12

5 32

2 8 17

3

4

35

1

Is this a valid AVL Tree? No
A valid Red-Black Tree? Yes

b: 0

b: 0

b: 0 b: 0 b: 0

b: 0

b: 1

b: 1

b: -1

b: -2

← Depth = 5

← Depth = 2

Right rotation at the root can make this 
an AVL tree as well…



Example

5

2 12

8

17

3

4

321

Is this a valid AVL Tree? Yes
A valid Red-Black Tree? 

b: 1 b: 0 b: 0

b: 1

b: 0

b: 1

b: 0

Right rotation at the root can make this 
an AVL tree as well…

35
b: 0

b: 0b: 0



Example

5

2 12

8

17

3

4

321

Is this a valid AVL Tree? Yes
A valid Red-Black Tree? Yes

b: 1 b: 0 b: 0

b: 1

b: 0

b: 1

b: 0

35
b: 0

b: 0b: 0

It's also still a Red-Black tree… EVERY AVL tree can be colored with a valid Red-Black coloring. 
(But not every Red-Black tree meets AVL constraints)



Now how can we use trees…



The mutable.Set[T] ADT

add(element: T): Unit
Store one copy of element if not already present

apply(element: T): Boolean
Return true if element is present in the set

remove(element: T): Boolean
Remove element if present, or return false if not



Implementing Sets

We've seen a few data structures we could use to implement the Set ADT:
● Linked Lists
● ArrayBuffers
● BSTs

What do these implementations look like and how do they perform?



Implementing Set.add

Implementing add:

● With a LinkedList?



Implementing Set.add

Implementing add:

● With a LinkedList? Just prepend the element in O(1) time (could also 
store it in sorted order in O(n) time)



Implementing Set.add

Implementing add:

● With a LinkedList? Just prepend the element in O(1) time (could also 
store it in sorted order in O(n) time)

● With an ArrayBuffer?



Implementing Set.add

Implementing add:

● With a LinkedList? Just prepend the element in O(1) time (could also 
store it in sorted order in O(n) time)

● With an ArrayBuffer? Just append the element in amortized O(1) time 
(could also store in sorted order in O(n) time)



Implementing Set.add

Implementing add:

● With a LinkedList? Just prepend the element in O(1) time (could also 
store it in sorted order in O(n) time)

● With an ArrayBuffer? Just append the element in amortized O(1) time 
(could also store in sorted order in O(n) time)

● With a BST?



Implementing Set.add

Implementing add:

● With a LinkedList? Just prepend the element in O(1) time (could also 
store it in sorted order in O(n) time)

● With an ArrayBuffer? Just append the element in amortized O(1) time 
(could also store in sorted order in O(n) time)

● With a BST? Add the element to the tree in O(d) time…



Implementing Set.add

Implementing add:

● With a LinkedList? Just prepend the element in O(1) time (could also 
store it in sorted order in O(n) time)

● With an ArrayBuffer? Just append the element in amortized O(1) time 
(could also store in sorted order in O(n) time)

● With a Balanced BST? Add the element to the tree in O(d) = O(log n)



Implementing Set.apply

Implementing apply:

● With a LinkedList?



Implementing Set.apply

Implementing apply:

● With a LinkedList? Search for the element in O(n) time (still O(n) even if 
the list is sorted)



Implementing Set.apply

Implementing apply:

● With a LinkedList? Search for the element in O(n) time (still O(n) even if 
the list is sorted)

● With an ArrayBuffer?



Implementing Set.apply

Implementing apply:

● With a LinkedList? Search for the element in O(n) time (still O(n) even if 
the list is sorted)

● With an ArrayBuffer? Search for the element in O(n) time (can search 
in O(log n) time if the ArrayBuffer is sorted)



Implementing Set.apply

Implementing apply:

● With a LinkedList? Search for the element in O(n) time (still O(n) even if 
the list is sorted)

● With an ArrayBuffer? Search for the element in O(n) time (can search 
in O(log n) time if the ArrayBuffer is sorted)

● With a Balanced BST?



Implementing Set.apply

Implementing apply:

● With a LinkedList? Search for the element in O(n) time (still O(n) even if 
the list is sorted)

● With an ArrayBuffer? Search for the element in O(n) time (can search 
in O(log n) time if the ArrayBuffer is sorted)

● With a Balanced BST? Find the element O(d) = O(log n)



Implementing Set.remove

Implementing remove:

● With a LinkedList?



Implementing Set.remove

Implementing remove:

● With a LinkedList? Search for the element in O(n) time, remove in O(1)



Implementing Set.remove

Implementing remove:

● With a LinkedList? Search for the element in O(n) time, remove in O(1)
● With an ArrayBuffer?



Implementing Set.remove

Implementing remove:

● With a LinkedList? Search for the element in O(n) time, remove in O(1)
● With an ArrayBuffer? Search for the element in O(n) or O(log n) time 

but remove in O(n) regardless (have to shift potentially n elements)



Implementing Set.remove

Implementing remove:

● With a LinkedList? Search for the element in O(n) time, remove in O(1)
● With an ArrayBuffer? Search for the element in O(n) or O(log n) time 

but remove in O(n) regardless (have to shift potentially n elements)
● With a Balanced BST?



Implementing Set.remove

Implementing remove:

● With a LinkedList? Search for the element in O(n) time, remove in O(1)
● With an ArrayBuffer? Search for the element in O(n) or O(log n) time 

but remove in O(n) regardless (have to shift potentially n elements)
● With a Balanced BST? Remove the element O(d) = O(log n)



Implementing Set

We can implement Set (and Bag) with a Balanced Binary Tree to give  
O(log n) runtime for all operations.

What about Map?



The mutable.Set[T] ADT and Maps

add(element: T): Unit
Store one copy of element if not already present

apply(element: T): Boolean
Return true if element is present in the set

remove(element: T): Boolean
Remove element if present, or return false if not

Maps are like Sets, but where T is a 2-tuple: (key, value)

The identity of the element is determined by key



The Map[K,V] ADT

add(key: K, value: V): Unit // AKA put(...)
Insert (key, value) into the map. If key already exists, replace it.

apply(key: K): V // AKA get(...)
Return the value corresponding to key

remove(key: K): V
Remove the element associated with key and return the value



Map Implementations

Map[K,V] as a Sorted Sequence
● apply
● add
● remove
Map[K,V] as a balanced Binary Search Tree
● apply
● add
● remove



Map Implementations

Map[K,V] as a Sorted Sequence
● apply O(log(n)) for Array, O(n) for Linked List
● add O(n)
● removeO(n)
Map[K,V] as a balanced Binary Search Tree
● apply
● add
● remove



Map Implementations

Map[K,V] as a Sorted Sequence
● apply O(log(n)) for Array, O(n) for Linked List
● add O(n)
● removeO(n)
Map[K,V] as a balanced Binary Search Tree
● apply O(log(n))
● add O(log(n))
● removeO(log(n))



Map Implementations

Map[K,V] as a Sorted Sequence
● apply O(log(n)) for Array, O(n) for Linked List
● add O(n)
● removeO(n)
Map[K,V] as a balanced Binary Search Tree
● apply O(log(n))
● add O(log(n))
● removeO(log(n))

Remember: a Map is just a Set of tuples, 
so these runtimes are due to the same 
implementations we discussed for Sets 
in previous slides



Finding Items

When implementing these operations with a BST where is most of "cost" of 
each algorithm coming from?

So…let's skip the search



Finding Items

When implementing these operations with a BST where is most of "cost" of 
each algorithm coming from? Finding the element

So…let's skip the search
apply => find the element
add => find the insertion point, then add (the add is often O(1))
remove => find the element, then remove (the remove is often O(1))



Finding Items

When implementing these operations with a BST where is most of "cost" of 
each algorithm coming from? Finding the element

So…let's skip the search
apply => find the element
add => find the insertion point, then add (the add is often O(1))
remove => find the element, then remove (the remove is often O(1))

What if we could just…skip the find step?
What if we knew exactly where the element would be?



Assigning Bins

Which data structure has constant lookup if we know where our element is 
in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: If our records are names, first letter of name → [0,26)



Assigning Bins

Which data structure has constant lookup if we know where our element is 
in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: If our records are names, first letter of name → [0,26)



Assigning Bins

Which data structure has constant lookup if we know where our element is 
in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: creating a set of movies stored by first letter of title, Movie →[0,26)



Assigning Bins

A F G H…B … Z



Assigning Bins

A F G H…B … Z

add("Halloween")



Assigning Bins

A F G H…B … Z

add("Halloween") → "Halloween"[0] == "H" == 7

Halloween



Assigning Bins

A F G H…B … Z

add("Halloween") → "Halloween"[0] == "H" == 7

Halloween

This computation is O(1)



Assigning Bins

A F G H…B … Z

add("Friday the 13th") → "Friday the 13th"[0] == "F" == 5

HalloweenFriday the 
13th



Assigning Bins

A F G H…B … Z

add("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutFriday the 
13th



Assigning Bins

A F G H…B … Z

add("Babadook") → "Babadook"[0] == "B" == 1

HalloweenGet OutBabadook Friday the 
13th



Assigning Bins

A F G H…B … Z

find("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutBabadook Friday the 
13th

Find in constant time!



Assigning Bins

A F G H…B … Z

find("Scream") → "Scream"[0] == "S" == 18

HalloweenGet OutBabadook Friday the 
13th

Determine that "Scream" is not in the Set in constant time!



Assigning Bins

A F G H…B … Z

What about: find("Hereditary")?

HalloweenGet OutBabadook Friday the 
13th



Assigning Bins

A F G H…B … Z

What about: find("Hereditary")?
Once we know the location, we still need to check for an exact match.
"Hereditary"[0] == "H" == 7, Array[7] != "Hereditary"

HalloweenGet OutBabadook Friday the 
13th



Assigning Bins

Pros
● O(1) insert
● O(1) find
● O(1) remove

Cons
● Wasted space (4/26 slots used in the example, will we ever use "Z"?)
● Duplication (What about inserting Frankenstein)



Bin-Based Organization

Wasted Space
● Not ideal…but not wrong
● O(1) access time might be worth it
● Also depends on the choice of function

Duplication
● We need to be able to handle duplicates



Bin-Based Organization

Wasted Space
● Not ideal…but not wrong
● O(1) access time might be worth it
● Also depends on the choice of function

Duplication
● We need to be able to handle duplicates

What about "buckets" instead of "bins" (store multiple items per location)



Handling "Duplicates"

How can we store multiple items at each location?



Bigger Buckets

Fixed Size Buckets (B elements)

Pros
● Can deal with up to B dupes
● Still O(1) find

Cons
● What if more than B dupes?

Arbitrarily Large Buckets (List)

Pros
● No limit to number of dupes

Cons
● O(n) worst-case find



Assigning Bins

A F G H…B … Z

add("Frankenstein")?

HalloweenGet OutBabadook Friday the 
13th

∅ ∅ ∅ ∅… ∅ … ∅



Assigning Bins

A F G H…B … Z

add("Frankenstein")?

HalloweenGet OutBabadook Friday the 
13th

∅ ∅ ∅ ∅… ∅ … ∅

FFrankenstein

∅


