Tree Wrap-Up and Hash Functions
Announcements and Feedback

- PA3 Implementation due Sunday @ 11:59PM
- WA3 coming soon...will include PA3 wrap-up and tree questions
The tree operations on a BST are always $O(d)$ (they involve a constant number of trips from root to leaf at most).

The balanced varieties (AVL and Red-Black) constrain the depth
Constraining Tree Depth

AVL Trees

Keep tree **balanced**: subtrees +/-1 of each other in height

- Add a field to track amount of "imbalance"
- If imbalance exceeds +/-1, perform rotations to fix

Red-Black Trees

Keep leaves at some minimum depth \((d/2)\)

- Add a color to each node marking it as "red" or "black"
 a. Keep # of black nodes = on every path from leaf to root
 b. Don't let red nodes have red parents
- If either rule is broken, rotate and recolor to fix
Is this a valid AVL Tree?
A valid Red-Black Tree?
Is this a valid AVL Tree? No
A valid Red-Black Tree? No

The 13 is larger than 12, but left of 12. Don't forget, AVL and Red-Black trees are both BSTs!
Is this a valid AVL Tree?
A valid Red-Black Tree?
Is this a valid AVL Tree? No
A valid Red-Black Tree?
Example

Is this a valid AVL Tree? No
A valid Red-Black Tree? Yes
Is this a valid AVL Tree? No
A valid Red-Black Tree? Yes

Right rotation at the root can make this an AVL tree as well...
Example

Is this a valid AVL Tree? Yes
A valid Red-Black Tree?

Right rotation at the root can make this an AVL tree as well...
It's also still a Red-Black tree... EVERY AVL tree can be colored with a valid Red-Black coloring. (But not every Red-Black tree meets AVL constraints)
Now how can we use trees...
The mutable.Set[T] ADT

add(element: T): Unit
 Store one copy of element if not already present

apply(element: T): Boolean
 Return true if element is present in the set

remove(element: T): Boolean
 Remove element if present, or return false if not
Implementing Sets

We've seen a few data structures we could use to implement the Set ADT:

- Linked Lists
- ArrayBuffers
- BSTs

What do these implementations look like and how do they perform?
Implementing `Set.add`

Implementing `add`:

- With a LinkedList?
Implementing `Set.add`

Implementing `add`:

- With a LinkedList? Just prepend the element in $O(1)$ time (could also store it in sorted order in $O(n)$ time)
Implementing Set . add

Implementing add:

- With a LinkedList? Just prepend the element in $O(1)$ time (could also store it in sorted order in $O(n)$ time)
- With an ArrayBuffer?
Implementing `Set.add`

Implementing `add`:

- With a LinkedList? Just prepend the element in $O(1)$ time (could also store it in sorted order in $O(n)$ time)
- With an ArrayBuffer? Just append the element in amortized $O(1)$ time (could also store in sorted order in $O(n)$ time)
Implementing add:

- With a LinkedList? Just prepend the element in $O(1)$ time (could also store it in sorted order in $O(n)$ time).
- With an ArrayBuffer? Just append the element in amortized $O(1)$ time (could also store in sorted order in $O(n)$ time).
- With a BST?
Implementing Set.add

Implementing add:

- With a LinkedList? Just prepend the element in $O(1)$ time (could also store it in sorted order in $O(n)$ time)
- With an ArrayBuffer? Just append the element in amortized $O(1)$ time (could also store in sorted order in $O(n)$ time)
- With a BST? Add the element to the tree in $O(d)$ time...
Implementing Set . add

Implementing add:

- With a LinkedList? Just prepend the element in $O(1)$ time (could also store it in sorted order in $O(n)$ time)
- With an ArrayBuffer? Just append the element in amortized $O(1)$ time (could also store in sorted order in $O(n)$ time)
- With a **Balanced** BST? Add the element to the tree in $O(d) = O(\log n)$
Implementing `Set.apply`

Implementing `apply`:

- With a LinkedList?
Implementing Set.apply

Implementing apply:

- With a LinkedList? Search for the element in $O(n)$ time (still $O(n)$ even if the list is sorted)
Implementing `Set.apply`

Implementing `apply`:

- With a LinkedList? Search for the element in $O(n)$ time (still $O(n)$ even if the list is sorted)
- With an ArrayBuffer?
Implementing Set.apply

Implementing apply:

- With a LinkedList? Search for the element in $O(n)$ time (still $O(n)$ even if the list is sorted)
- With an ArrayBuffer? Search for the element in $O(n)$ time (can search in $O(\log n)$ time if the ArrayBuffer is sorted)
Implementing Set.apply

Implementing apply:

- With a LinkedList? Search for the element in $O(n)$ time (still $O(n)$ even if the list is sorted)
- With an ArrayBuffer? Search for the element in $O(n)$ time (can search in $O(\log n)$ time if the ArrayBuffer is sorted)
- With a Balanced BST?
Implementing `Set.apply`

Implementing `apply`:

- With a LinkedList? Search for the element in $O(n)$ time (still $O(n)$ even if the list is sorted)
- With an ArrayBuffer? Search for the element in $O(n)$ time (can search in $O(\log n)$ time if the ArrayBuffer is sorted)
- With a **Balanced** BST? Find the element $O(d) = O(\log n)$
Implementing `Set.remove`:

- With a LinkedList?
Implementing `Set.remove`

Implementing `remove`:

- With a LinkedList? Search for the element in $O(n)$ time, remove in $O(1)$
Implementing `Set.remove`

Implementing `remove`:

- With a LinkedList? Search for the element in $O(n)$ time, remove in $O(1)$
- With an ArrayBuffer?
Implementing `Set.remove`

Implementing `remove`:

- With a LinkedList? Search for the element in $O(n)$ time, remove in $O(1)$
- With an ArrayBuffer? Search for the element in $O(n)$ or $O(\log n)$ time but remove in $O(n)$ regardless (have to shift potentially n elements)
Implementing `Set.remove`

Implementing `remove`:
- With a LinkedList? Search for the element in $O(n)$ time, remove in $O(1)$
- With an ArrayBuffer? Search for the element in $O(n)$ or $O(\log n)$ time but remove in $O(n)$ regardless (have to shift potentially n elements)
- With a **Balanced** BST?
Implementing `Set.remove`

Implementing `remove`:

- With a LinkedList? Search for the element in $O(n)$ time, remove in $O(1)$
- With an ArrayBuffer? Search for the element in $O(n)$ or $O(\log n)$ time but remove in $O(n)$ regardless (have to shift potentially n elements)
- With a **Balanced** BST? Remove the element $O(d) = O(\log n)$
Implementing Set

We can implement Set (and Bag) with a Balanced Binary Tree to give $O(\log n)$ runtime for all operations.

What about Map?
The mutable.Set[T] ADT and Maps

add(element: T): Unit
 Store one copy of element if not already present

apply(element: T): Boolean
 Return true if element is present in the set

remove(element: T): Boolean
 Remove element if present, or return false if not

Maps are like Sets, but where T is a 2-tuple: (key, value)
The identity of the element is determined by key
The `Map[K,V]` ADT

```haskell
def add(key: K, value: V): Unit  // AKA put(...)  
   Insert (key, value) into the map. If key already exists, replace it.

def apply(key: K): V  // AKA get(...)  
   Return the value corresponding to key

def remove(key: K): V  
   Remove the element associated with key and return the value
```
Map Implementations

Map\([K,V]\) as a **Sorted Sequence**
- apply
- add
- remove

Map\([K,V]\) as a **balanced Binary Search Tree**
- apply
- add
- remove
Map Implementations

Map\([K,V]\) as a **Sorted Sequence**
- **apply** \(O(\log(n))\) for Array, \(O(n)\) for Linked List
- **add** \(O(n)\)
- **remove** \(O(n)\)

Map\([K,V]\) as a **balanced Binary Search Tree**
- **apply**
- **add**
- **remove**
Map Implementations

Map\([K, V]\) as a Sorted Sequence
- apply \(O(\log(n))\) for Array, \(O(n)\) for Linked List
- add \(O(n)\)
- remove \(O(n)\)

Map\([K, V]\) as a balanced Binary Search Tree
- apply \(O(\log(n))\)
- add \(O(\log(n))\)
- remove \(O(\log(n))\)
Map Implementations

Map\[K,V\] as a Sorted Sequence
- apply \(O(\log(n)) \) for Array, \(O(n) \) for Linked List
- add \(O(n) \)
- remove \(O(n) \)

Map\[K,V\] as a balanced Binary Search Tree
- apply \(O(\log(n)) \)
- add \(O(\log(n)) \)
- remove \(O(\log(n)) \)

Remember: a Map is just a Set of tuples, so these runtimes are due to the same implementations we discussed for Sets in previous slides
Finding Items

When implementing these operations with a BST where is most of "cost" of each algorithm coming from?
Finding Items

When implementing these operations with a BST where is most of "cost" of each algorithm coming from? Finding the element

apply => find the element
add => find the insertion point, then add (the add is often $O(1)$)
remove => find the element, then remove (the remove is often $O(1)$)
Finding Items

When implementing these operations with a BST where is most of "cost" of each algorithm coming from? **Finding the element**

- **apply** => find the element
- **add** => **find the insertion point**, then add (the add is often $O(1)$)
- **remove** => **find the element**, then remove (the remove is often $O(1)$)

What if we could just...skip the find step?

What if we knew exactly where the element would be?
Assigning Bins

Which data structure has constant lookup if we know where our element is in a sequence?
Assigning Bins

Which data structure has constant lookup if we know where our element is in a sequence? An Array
Assigning Bins

Which data structure has constant lookup if we know where our element is in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

- Create an array of size N
- Pick an $O(1)$ function to assign each record a number in $[0,N)$
 - i.e.: creating a set of movies stored by first letter of title, Movie $\rightarrow [0,26)$
Assigning Bins

A B ... F G H ... Z
Assigning Bins

add("Halloween")
Assigning Bins

add("Halloween") → "Halloween"[0] == "H" == 7
Assigning Bins

add("Halloween") → "Halloween"[0] == "H" == 7

This computation is $O(1)$
Assigning Bins

\[
\text{add("Friday the 13th")} \rightarrow \text{"Friday the 13th"[0] == "F" == 5}
\]

A B ... G Halloween ... Z
Assigning Bins

```
add("Get Out") \rightarrow "Get Out"[0] == "G" == 6
```

```
A  B  ...  Friday the 13th  Get Out  Halloween  ...  Z
```
Assigning Bins

add("Babadook") → "Babadook"[0] == "B" == 1
Assigning Bins

\[\text{find("Get Out") \rightarrow "Get Out"[0] == "G" == 6} \]

Find in constant time!
Assigning Bins

find("Scream") → "Scream"[0] == "S" == 18

Determine that "Scream" is not in the Set in constant time!
Assigning Bins

What about: `find("Hereditary")`?
Assigning Bins

What about: `find("Hereditary")`? Once we know the location, we still need to check for an exact match. "Hereditary"[0] == "H" == 7, Array[7] != "Hereditary"

| A | Babadook | ... | Friday the 13th | Get Out | Halloween | ... | Z |
Assigning Bins

Pros
● $O(1)$ insert
● $O(1)$ find
● $O(1)$ remove

Cons
● Wasted space (4/26 slots used in the example, will we ever use "Z"?)
● Duplication (What about inserting Frankenstein)
Bin-Based Organization

Wasted Space
● Not ideal...but not wrong
● $O(1)$ access time might be worth it
● Also depends on the choice of function

Duplication
● We need to be able to handle duplicates
Bin-Based Organization

Wasted Space
- Not ideal...but not wrong
- $O(1)$ access time might be worth it
- Also depends on the choice of function

Duplication
- We need to be able to handle duplicates

What about "buckets" instead of "bins" (store multiple items per location)
Handling "Duplicates"

How can we store multiple items at each location?
Bigger Buckets

Fixed Size Buckets (B elements)

Pros
- Can deal with up to B dupes
- Still $O(1)$ find

Cons
- What if more than B dupes?

Arbitrarily Large Buckets (List)

Pros
- No limit to number of dupes

Cons
- $O(n)$ worst-case find
Assigning Bins

add("Frankenstein")?

<table>
<thead>
<tr>
<th>A</th>
<th>Babadook</th>
<th>...</th>
<th>Friday the 13th</th>
<th>Get Out</th>
<th>Halloween</th>
<th>...</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Ø</td>
<td>...</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>
Assigning Bins

<table>
<thead>
<tr>
<th>A</th>
<th>Babadook</th>
<th>...</th>
<th>Friday the 13th</th>
<th>Get Out</th>
<th>Halloween</th>
<th>...</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td>∅</td>
<td>...</td>
<td>∅</td>
<td>∅</td>
<td>∅</td>
<td>...</td>
<td>∅</td>
</tr>
</tbody>
</table>

add("Frankenstein")?