
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Hash Functions

mailto:epmikida@buffalo.edu


Announcements

● WA3 released, due 4/23/23 @ 11:59PM
○ Make sure you have the correct version



Clarification on Red-Black Trees

Is the following a valid Red-Black Tree?

What depth are the EmptyTree nodes?

4

3 6

75

8

1

2



Clarification on Red-Black Trees

Is the following a valid Red-Black Tree?

What depth are the EmptyTree nodes?

4

3 6

75

8

1

2

2

3

4 4

3 3

4 4

3



Clarification on Red-Black Trees

Is the following a valid Red-Black Tree?

What depth are the EmptyTree nodes?

By just considering depth from the root 
this tree seems to fit the necessary 
constraints…

But just like AVL trees, this property 
must hold for ALL nodes in the tree…

4

3 6

75

8

1

2

2

3

4 4

3 3

4 4

3



Clarification on Red-Black Trees

Consider the subtree rooted at 3

What are the depth of the EmptyTree 
nodes with respect to 3?

4

3 6

75

8

1

2

2

3

4 4

3 3

4 4

3



Clarification on Red-Black Trees

Consider the subtree rooted at 3

What are the depth of the EmptyTree 
nodes with respect to 3?

4

3 6

75

8

1

2

1

2

3 3

3 3

4 4

3



Clarification on Red-Black Trees

Consider the subtree rooted at 3

What are the depth of the EmptyTree 
nodes with respect to 3?

This does not meet Red-Black 
constraints on depth

…and we can see it is impossible to 
color these nodes by the rules

4

3 6

75

8

1

2

1

2

3 3

3 3

4 4

3



Clarification on Red-Black Trees

Since we are unable to color the 
subtree rooted at 3, we are unable to 
color the entire tree

4

3 6

75

8

1

2

2

3

4 4

3 3

4 4

3



Back to HashTables…



Map Implementations

Map[K,V] as a Sorted Sequence
● apply O(log(n)) for Array, O(n) for Linked List
● add O(n)
● removeO(n)
Map[K,V] as a balanced Binary Search Tree
● apply O(log(n))
● add O(log(n))
● removeO(log(n))



Finding Items

For most of these operations, the expensive part is finding the record…

So…let's skip the search



Finding Items

For most of these operations, the expensive part is finding the record…

So…let's skip the search



Assigning Bins

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: If our records are names, first letter of name → [0,26)



Assigning Bins

A F G H…B … Z



Assigning Bins

A F G H…B … Z

add("Halloween")



Assigning Bins

A F G H…B … Z

add("Halloween") → "Halloween"[0] == "H" == 7

Halloween



Assigning Bins

A F G H…B … Z

add("Halloween") → "Halloween"[0] == "H" == 7

Halloween

This computation is O(1)



Assigning Bins

A F G H…B … Z

add("Friday the 13th") → "Friday the 13th"[0] == "F" == 5

HalloweenFriday the 
13th



Assigning Bins

A F G H…B … Z

add("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutFriday the 
13th



Assigning Bins

A F G H…B … Z

add("Babadook") → "Babadook"[0] == "B" == 1

HalloweenGet OutBabadook Friday the 
13th



Assigning Bins

A F G H…B … Z

find("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutBabadook Friday the 
13th

Find in constant time!



Assigning Bins

A F G H…B … Z

find("Scream") → "Scream"[0] == "S" == 18

HalloweenGet OutBabadook Friday the 
13th

Determine that "Scream" is not in the Set in constant time!



Assigning Bins

Pros
● O(1) insert
● O(1) find
● O(1) remove

Cons
● Wasted space (4/26 slots used in the example, will we ever use "Z"?)
● Duplication (What about inserting Frankenstein)



Bin-Based Organization

Wasted Space
● Not ideal…but not wrong
● O(1) access time might be worth it
● Also depends on the choice of function

Duplication
● We need to be able to handle duplicates



Bin-Based Organization

Wasted Space
● Not ideal…but not wrong
● O(1) access time might be worth it
● Also depends on the choice of function

Duplication
● We need to be able to handle duplicates

What about "buckets" instead of "bins" (store multiple items per location)



Handling "Duplicates"

How can we store multiple items at each location?



Bigger Buckets

Fixed Size Buckets (B elements)

Pros
● Can deal with up to B dupes
● Still O(1) find

Cons
● What if more than B dupes?

Arbitrarily Large Buckets (List)

Pros
● No limit to number of dupes

Cons
● O(n) worst-case find



Assigning Bins

A F G H…B … Z

add("Frankenstein")?

HalloweenGet OutBabadook Friday the 
13th

∅ ∅ ∅ ∅… ∅ … ∅



Assigning Bins

A F G H…B … Z

add("Frankenstein")?

HalloweenGet OutBabadook Friday the 
13th

∅ ∅ ∅… ∅ … ∅

FFrankenstein

∅



LinkedList Bins

Now we can handle as many duplicates as we need. But are we losing our 
constant time operations?

How many elements are we expecting to end up in each bucket?



LinkedList Bins

Now we can handle as many duplicates as we need. But are we losing our 
constant time operations?

How many elements are we expecting to end up in each bucket?

Depends partially on our choice of Hash Function



Picking a Hash Function

Desirable features for h(x):
● Fast — needs to be O(1)
● "Unique" – As few duplicate bins as possible



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

apply(k) is O(1)



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

Ideal!

…but unachievableapply(k) is O(1)



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

apply(k) is O(n)



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t Worst Case!

apply(k) is O(n)



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

apply(k) is something like O(1)?



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

Almost Ideal!

…and achievable

apply(k) is something like O(1)?



Other Functions

First Letter of UBIT Name
● Unevenly distributed, O(n) worst case apply



First Letter of UBIT Name



Other Functions

First Letter of UBIT Name
● Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
● Need a 50m+ element array



Other Functions

First Letter of UBIT Name
● Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
● Need a 50m+ element array
● Problem: For reasonable N, identity function returns something > N



Other Functions

First Letter of UBIT Name
● Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
● Need a 50m+ element array
● Problem: For reasonable N, identity function returns something > N
● Solution: Cap return value of function to N with modulus

○ (x: Int) => x % N



Identity of UBIT # mod 26



Comparison



Comparison

This still relies on UBIT # 
being "randomly distributed"



Picking a Hash Function

What else could we use that would evenly distribute values to locations?



Picking a Hash Function

What else could we use that would evenly distribute values to locations?

Wacky Idea: Have h(x) return a random value in [0,N)

(This makes apply impossible…but bear with me)



Random Hash Function



Random Hash Function



Random Hash Function



Random Hash Function



Random Hash Function

…given this information, what do the 
runtimes of our operations look like?



Random Hash Function

Expected runtime of insert, apply, remove: O(n/N)

Worst-Case runtime of insert, apply, remove: O(n)



Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y



Hash Functions + Buckets



Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?



Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?



Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?



Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated? Resize!


