CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

HashTables

Picking a Hash Function

What function could we use that would evenly distribute values to buckets?

Picking a Hash Function

What function could we use that would evenly distribute values to buckets?
Wacky Idea: Have $\boldsymbol{h}(\boldsymbol{x})$ return a random value in $[\mathbf{0}, \mathrm{N})$
(This makes apply impossible...but bear with me)

Random Hash Function

$$
\begin{gathered}
n=\text { number of elements in any bucket } \\
N=\text { number of buckets } \\
b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Random Hash Function

$n=$ number of elements in any bucket

$$
N=\text { number of buckets }
$$

$b_{i, j}=\left\{\begin{array}{l}1 \quad \text { if element } i \text { is assigned to bucket } j\end{array}\right.$ 0 otherwise

$$
\mathbb{E}\left[b_{i, j}\right]=\frac{1}{N}
$$

Random Hash Function

$n=$ number of elements in any bucket

$$
N=\text { number of buckets }
$$

$b_{i, j}=\left\{\begin{array}{l}1 \quad \text { if element } i \text { is assigned to bucket } j\end{array}\right.$ 0 otherwise

$$
\mathbb{E}\left[\sum_{i=0}^{n} b_{i, j}\right]=\frac{n}{N}
$$

Random Hash Function

$n=$ number of elements in any bucket
 $N=$ number of buckets

$b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j \\ 0 & \text { otherwise }\end{cases}$

(h(i) can't be related to $h\left({ }^{\prime}\right)$)

Random Hash Function

$n=$ number of elements in any bucket
 $N=$ number of buckets

$b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j \\ 0 & \text { otherwise }\end{cases}$

...given this information, what do the
(h(i) can't be related to h(i'))

Random Hash Function

$n=$ number of elements in any bucket

$$
N=\text { number of buckets }
$$

$b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j \\ 0 & \text { otherwise }\end{cases}$
Expected runtime of insert, apply, remove: $O(n / N)$
Worst-Case runtime of insert, apply, remove: $O(n)$

Hash Functions In the Real-World

Examples

- SHA256
- MD5, BCRYPT \leftarrow Used by unix login, apt
- MurmurHash3 \leftarrow Used by Scala
hash (x) is pseudo-random
- hash (x) ~ uniform random value in [0, INT_MAX)
- hash(x) always returns the same value for the same x
- hash(x) is uncorrelated with hash(y) for all $x \neq y$

Hash Functions In the Real-World

Examples

- SHA256
- MD5, BCRYPT
- MurmurHash3
\leftarrow Used by GIT
\leftarrow Used by unix login, apt
\leftarrow Used by Scala
hash(x) is pseudo-random

We then use modulus to fit this random value into the size of our hash table

- hash (x) ~ uniform random value in [0, INT_MAX)
- hash (x) always returns the same value for the same x
- hash(x) is uncorrelated with hash(y) for all $x \neq y$

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d}+\boldsymbol{r}$.

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d} \boldsymbol{r}$.

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d}+\boldsymbol{r}$. (It returns the remainder of $\boldsymbol{n} / \boldsymbol{d}$)

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d}+\boldsymbol{r}$. (It returns the remainder of $\boldsymbol{n} / \boldsymbol{d}$)

0	1	2	3	4	5	6

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d}+\boldsymbol{r}$. (It returns the remainder of $\boldsymbol{n} / \boldsymbol{d}$)

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
0	1	2	3	4	5	6

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d}+\boldsymbol{r}$. (It returns the remainder of $\boldsymbol{n} / \boldsymbol{d}$)

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
0	1	2	3	4	5	6
7	8	9	10	11	12	13

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d}+\boldsymbol{r}$. (It returns the remainder of $\boldsymbol{n} / \boldsymbol{d}$)

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
	1	2	3	4	5	6	
7	8	9	10	11	12	13	
14	15	16	17	18	19	20	

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d} \boldsymbol{+}$. (It returns the remainder of $\boldsymbol{n} / \boldsymbol{d}$)

0	1	2	3	4	5	6

If my hash table has 7 buckets, and I insert an element with hash code 73, what bucket would it go in?

Refresher on Modulus

The modulus function takes any integers \boldsymbol{n} and \boldsymbol{d}, and returns a number \boldsymbol{r} in the range $[0, \boldsymbol{d})$, such that $\boldsymbol{n}=\boldsymbol{q} * \boldsymbol{d} \boldsymbol{+}$. (It returns the remainder of $\boldsymbol{n} / \boldsymbol{d}$)

0	1	2	3	4	5	6

If my hash table has 7 buckets, and I insert an element with hash code 73, what bucket would it go in? $73 \% 7=3$

Hash Function Recap

- We now have pseudo-random hash functions that run in $\mathbf{O (1)}$

Hash Function Recap

- We now have pseudo-random hash functions that run in $\mathbf{O (1)}$
- They act as if they are uniformly random
- Will evenly distribute elements to buckets
- hash (\boldsymbol{x}) is uncorrelated with hash(\mathbf{y})

Hash Function Recap

- We now have pseudo-random hash functions that run in $\mathbf{O (1)}$
- They act as if they are uniformly random
- Will evenly distribute elements to buckets
- hash (\boldsymbol{x}) is uncorrelated with hash (\boldsymbol{y})
- They are deterministic (hash(x) will always return the same value)

Hash Function Recap

- We now have pseudo-random hash functions that run in $\mathbf{O (1)}$
- They act as if they are uniformly random
- Will evenly distribute elements to buckets
- hash (\boldsymbol{x}) is uncorrelated with hash(\mathbf{y})
- They are deterministic (hash(x) will always return the same value)
- We can use these hash functions to determine which bucket an arbitrary element belongs in in $O(1)$ time

Hash Function Recap

- We now have pseudo-random hash functions that run in $\mathbf{O (1)}$
- They act as if they are uniformly random
- Will evenly distribute elements to buckets
- hash (\boldsymbol{x}) is uncorrelated with hash($\boldsymbol{y})$
- They are deterministic (hash(\boldsymbol{x}) will always return the same value)
- We can use these hash functions to determine which bucket an arbitrary element belongs in in $\mathbf{O (1)}$ time
- There are expected to be $\boldsymbol{n} / \mathbf{N}$ elements in that bucket
- So runtime for all operations is expected $O(1)+O(n / N)=\operatorname{expected} O(n)$

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.
Idea: Make α a constant

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Idea: Make α a constant
Fix an $\alpha_{\text {max }}$ and start requiring that $\alpha \leq \alpha_{\text {max }}$

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Idea: Make α a constant
Fix an $\alpha_{\text {max }}$ and start requiring that $\alpha \leq \alpha_{\text {max }}$

What do we do when this constraint is violated?

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Idea: Make α a constant
Fix an $\alpha_{\text {max }}$ and start requiring that $\alpha \leq \alpha_{\text {max }}$

What do we do when this constraint is violated? Resize!

Rehashing

When we insert an element that would exceed the load factor we:

1. Resize the underlying array from $\boldsymbol{N}_{\text {old }}$ to $\boldsymbol{N}_{\text {new }}$
2. Rehash all of the elements from their old bucket to their new bucket
a. Element \boldsymbol{x} moves from hash $(\boldsymbol{x}) \% \boldsymbol{N}_{\text {old }}$ to hash $(\boldsymbol{x}) \% \boldsymbol{N}_{\text {new }}$

Rehashing

Let's say we have a hash table of size 6, and hash $(\boldsymbol{x})=65$
What bucket does it belong in?

0	1	2	3	4	5	6

Rehashing

Let's say we have a hash table of size 6, and hash $(\boldsymbol{x})=65$
What bucket does it belong in? $65 \% 6=5$

0	1	2	3	4	4^{x}	6

Now we want to resize the array to size 8 . Where do we move \boldsymbol{x} ?

0	1	2	3	4	5	6	5	6

Rehashing

Let's say we have a hash table of size 6, and hash $(\boldsymbol{x})=65$
What bucket does it belong in? $65 \% 6=5$

0	1	2	3	4	x^{x}	6

Now we want to resize the array to size 8 . Where do we move \boldsymbol{x} ? $65 \% 8=1$

0	x	2	3	4	5	6	5	6

Rehashing

How long will it take to rehash every element after we resize?
Related Question: How do we iterate through a hash table?

Iterating over a Hash Table

Iterating over a Hash Table

Start at the first bucket

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat
D F

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat
D F

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat

D F A

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat

D FACE

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat

D FA C E B

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat

D FA C E B

How long does it take?

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat

D FA C E B

How long does it take? $\mathbf{O}(\mathbf{N + n})$

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat

D FACEB

How long does it take? $\mathbf{O}(\mathbf{N + n})$

Visit every bucket

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket

...and repeat
$D F A C E B$
How long does it take? $\mathbf{O}(\mathbf{N + n})$

Rehashing

So how long does it take to rehash an entire hash table with \boldsymbol{n} elements and \boldsymbol{N} buckets?

Rehashing

So how long does it take to rehash an entire hash table with \boldsymbol{n} elements and \boldsymbol{N} buckets?

Rehashing an individual element costs $\mathbf{O}(1)$

Rehashing

So how long does it take to rehash an entire hash table with \boldsymbol{n} elements and \boldsymbol{N} buckets?

Rehashing an individual element costs $\mathbf{O}(1)$ Iterating through each element costs $\mathbf{O}(\mathbf{N + n})$

Rehashing

So how long does it take to rehash an entire hash table with \boldsymbol{n} elements and \boldsymbol{N} buckets?

Rehashing an individual element costs $\mathbf{O}(1)$
Iterating through each element costs $\mathbf{O}(\mathbf{N + n})$
Rehashing costs: $O(N+n)$

Rehashing

When we insert an element that would exceed the load factor we:

1. Resize the underlying array from $\boldsymbol{N}_{\text {old }}$ to $\boldsymbol{N}_{\text {new }}$
2. Rehash all of the elements from their old bucket to their new bucket
a. Element \boldsymbol{x} moves from hash $(\boldsymbol{x}) \% \boldsymbol{N}_{\text {old }}$ to hash $(\boldsymbol{x}) \% \boldsymbol{N}_{\text {new }}$

Rehashing

When we insert an element that would exceed the load factor we:

1. Resize the underlying array from $\boldsymbol{N}_{\text {old }}$ to $\boldsymbol{N}_{\text {new }}$
2. Rehash all of the elements from their old bucket to their new bucket
a. Element \boldsymbol{x} moves from hash $(\boldsymbol{x}) \% \boldsymbol{N}_{\text {old }}$ to hash $(\boldsymbol{x}) \% \boldsymbol{N}_{\text {new }}$

How long does this take?

1. Allocate the new array: $\mathbf{O}(1)$
2. Rehash every element from the old array to the new: $\mathbf{O}\left(\mathbf{N}_{\text {old }}+n\right)$
3. Free the old array: $\mathbf{O}(\mathbf{1})$

Total: $\mathbf{O}\left(\mathrm{N}_{\text {old }}+n\right)$

Rehashing

When we insert an element that would exceed the load factor we:

1. Resize the underlying array from $\boldsymbol{N}_{\text {old }}$ to $\boldsymbol{N}_{\text {new }}$
2. Rehash all of the elements from their old bucket to their new bucket
a. Element \boldsymbol{x} moves from hash $(\boldsymbol{x}) \% \boldsymbol{N}_{\text {old }}$ to hash $(\boldsymbol{x}) \% \boldsymbol{N}_{\text {new }}$

How long does this take?

1. Allocate the new array: $\mathbf{O}(1)$
2. Rehash every element from the old array to the new: $\mathbf{O}\left(\mathbf{N}_{\text {old }}+\boldsymbol{n}\right)$
3. Free the old array: $\mathbf{O}(\mathbf{1})$

Total: $\mathbf{O}\left(\mathrm{N}_{\text {old }}+n\right)$

Rehashing

Whenever $\boldsymbol{\alpha}>\boldsymbol{\alpha}_{\text {max }^{\prime}}$ double the size of the array (remember ArrayBuffers)
If we start with \boldsymbol{N} buckets and insert \boldsymbol{n} elements:

1. First rehash happens at $n_{1}=\alpha_{\max } \times N$: goes from N to $2 N$

Rehashing

Whenever $\boldsymbol{\alpha} \boldsymbol{>} \boldsymbol{\alpha}_{\text {max }^{\prime}}$ double the size of the array (remember ArrayBuffers)
If we start with \boldsymbol{N} buckets and insert \boldsymbol{n} elements:

1. First rehash happens at $n_{1}=\alpha_{\max } \times N$: goes from N to $2 N$
2. Second rehash happens at $n_{2}=\alpha_{\max } \times 2 N$: goes from $2 N$ to $4 N$

Rehashing

Whenever $\boldsymbol{\alpha}>\boldsymbol{\alpha}_{\text {max }^{\prime}}$ double the size of the array (remember ArrayBuffers)
If we start with \boldsymbol{N} buckets and insert \boldsymbol{n} elements:

1. First rehash happens at $n_{1}=\alpha_{\max } \times N$: goes from N to $2 N$
2. Second rehash happens at $n_{2}=\alpha_{\max } \times 2 N$: goes from $2 N$ to $4 N$
3. Third rehash happens at $n_{3}=\alpha_{\max } \times 4 N$: goes from $4 N$ to $8 N$

Rehashing

Whenever $\boldsymbol{\alpha}>\boldsymbol{\alpha}_{\text {max }^{\prime}}$ double the size of the array (remember ArrayBuffers)
If we start with \boldsymbol{N} buckets and insert \boldsymbol{n} elements:

1. First rehash happens at $n_{1}=\alpha_{\max } \times N$: goes from N to $2 N$
2. Second rehash happens at $n_{2}=\alpha_{\max } \times 2 N$: goes from $2 N$ to $4 N$
3. Third rehash happens at $n_{3}=\alpha_{\max } \times 4 N$: goes from $4 N$ to $8 N$
j. jth rehash happens at $n_{j}=\alpha_{\max } \times 2^{j-1} N$: goes from $2^{j-1} N$ to $2^{j} N$

Total Work

With \boldsymbol{n} insertions, choose \boldsymbol{j} s.t. $\boldsymbol{n}=\mathbf{2}^{\mathbf{j}} \boldsymbol{\alpha}_{\text {max }}$

$$
\begin{aligned}
& 2^{j}=n / \alpha_{\max } \\
& j=\log \left(n / \alpha_{\max }\right) \\
& j=\log (n)-\log \left(\alpha_{\max }\right) \\
& j \leq \log (n) \quad \leftarrow \text { Number of rehashes }
\end{aligned}
$$

Total Work

Rehashes required: $\leq \boldsymbol{\operatorname { l o g }}(\mathrm{n})$

The ith rehash: $\mathbf{O}\left(\mathbf{2}^{\mathbf{i}} \mathrm{N}\right)$

$$
\sum_{i=0}^{\log (n)} O\left(2^{i} N\right)=O\left(N \sum_{i=0}^{\log (n)} 2^{i}\right)=O\left(2^{\log (n)+1}-1\right)=O(n)
$$

So $\mathbf{O (n)}$ work is required to do \boldsymbol{n} insertions \rightarrow Insert cost is amortized $\mathbf{O (1)}$

