Picking a Hash Function

What function could we use that would evenly distribute values to buckets?
What function could we use that would evenly distribute values to buckets?

Wacky Idea: Have $h(x)$ return a random value in $[0,N)$

(This makes apply impossible…but bear with me)
Random Hash Function

\[
\begin{align*}
n &= \text{number of elements in any bucket} \\
N &= \text{number of buckets} \\
b_{i,j} &= \begin{cases}
1 & \text{if element } i \text{ is assigned to bucket } j \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]
Random Hash Function

\[n = \text{number of elements in any bucket} \]
\[N = \text{number of buckets} \]

\[b_{i,j} = \begin{cases}
1 & \text{if element } i \text{ is assigned to bucket } j \\
0 & \text{otherwise}
\end{cases} \]

\[\mathbb{E}[b_{i,j}] = \frac{1}{N} \]
Random Hash Function

\[n = \text{number of elements in any bucket} \]

\[N = \text{number of buckets} \]

\[b_{i,j} = \begin{cases}
1 & \text{if element } i \text{ is assigned to bucket } j \\
0 & \text{otherwise}
\end{cases} \]

\[\mathbb{E} \left[\sum_{i=0}^{n} b_{i,j} \right] = \frac{n}{N} \]
Random Hash Function

\[n = \text{number of elements in any bucket} \]

\[N = \text{number of buckets} \]

\[b_{i,j} = \begin{cases} 1 & \text{if element } i \text{ is assigned to bucket } j \\ 0 & \text{otherwise} \end{cases} \]

Only true if \(b_{ij} \) and \(b_{i'j} \) are uncorrelated for any \(i \neq i' \)

\[E \left[\sum_{i=0}^{n} b_{i,j} \right] = \frac{n}{N} \]

The expected number of elements in any bucket \(j \)

(h(i) can’t be related to h(i’))
Random Hash Function

\[n = \text{number of elements in any bucket} \]
\[N = \text{number of buckets} \]

\[b_{i,j} = \begin{cases} 1 & \text{if element } i \text{ is assigned to bucket } j \\ 0 & \text{otherwise} \end{cases} \]

Only true if \(b_{ij} \) and \(b_{i'j} \) are uncorrelated for any \(i \neq i' \)

\[\mathbb{E} \left[\sum_{i=0}^{n} b_{i,j} \right] = \frac{n}{N} \]

The expected number of elements in any bucket \(j \)

...given this information, what do the runtimes of our operations look like?
Random Hash Function

\[n = \text{number of elements in any bucket} \]
\[N = \text{number of buckets} \]
\[b_{i,j} = \begin{cases}
1 & \text{if element } i \text{ is assigned to bucket } j \\
0 & \text{otherwise}
\end{cases} \]

Expected runtime of `insert, apply, remove`: \(O(n/N) \)

Worst-Case runtime of `insert, apply, remove`: \(O(n) \)
Hash Functions In the Real-World

Examples

- SHA256 ← Used by GIT
- MD5, BCRYPT ← Used by unix login, apt
- MurmurHash3 ← Used by Scala

hash(x) is pseudo-random

- hash(x) ~ uniform random value in [0, INT_MAX)
- hash(x) always returns the same value for the same x
- hash(x) is uncorrelated with hash(y) for all x ≠ y
Hash Functions In the Real-World

Examples
- SHA256 ← Used by GIT
- MD5, BCRYPT ← Used by unix login, apt
- MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
- \(\text{hash}(x) \sim \) uniform random value in \([0, \text{INT}_\text{MAX})\)
- \(\text{hash}(x) \) always returns the same value for the same \(x \)
- \(\text{hash}(x) \) is uncorrelated with \(\text{hash}(y) \) for all \(x \neq y \)

We then use modulus to fit this random value into the size of our hash table.
Refresher on Modulus

The modulus function takes any integers \(n \) and \(d \), and returns a number \(r \) in the range \([0, d)\), such that \(n = q \times d + r \).
Refresher on Modulus

The modulus function takes any integers \(n \) and \(d \), and returns a number \(r \) in the range \([0, d)\), such that \(n = q \times d + r \).
Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in the range $[0, d)$, such that $n = q \times d + r$. (It returns the remainder of n / d)
The modulus function takes any integers n and d, and returns a number r in the range $[0, d)$, such that $n = q \times d + r$. (It returns the remainder of n / d)
Refresher on Modulus

The modulus function takes any integers \(n \) and \(d \), and returns a number \(r \) in the range \([0, d)\), such that \(n = q \times d + r \). (It returns the remainder of \(n / d \))
Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in the range $[0, d)$, such that $n = q \times d + r$. (It returns the remainder of n / d)
Refresher on Modulus

The modulus function takes any integers \(n \) and \(d \), and returns a number \(r \) in the range \([0, d)\), such that \(n = q \times d + r \). (It returns the remainder of \(n / d \)).
Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in the range $[0, d)$, such that $n = q \times d + r$. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73, what bucket would it go in?
Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in the range $[0, d)$, such that $n = q \times d + r$. (It returns the remainder of n / d

If my hash table has 7 buckets, and I insert an element with hash code 73, what bucket would it go in? $73 \% 7 = 3$
Hash Function Recap

- We now have *pseudo-random* hash functions that run in $O(1)$.
Hash Function Recap

- We now have *pseudo-random* hash functions that run in $O(1)$
 - They act as if they are uniformly random
 - Will evenly distribute elements to buckets
 - $\text{hash}(x)$ is uncorrelated with $\text{hash}(y)$
Hash Function Recap

- We now have *pseudo-random* hash functions that run in $O(1)$
 - They act as if they are uniformly random
 - Will evenly distribute elements to buckets
 - $\text{hash}(x)$ is uncorrelated with $\text{hash}(y)$
 - They are deterministic ($\text{hash}(x)$ will always return the same value)
Hash Function Recap

- We now have *pseudo-random* hash functions that run in $O(1)$
 - They act as if they are uniformly random
 - Will evenly distribute elements to buckets
 - hash(x) is uncorrelated with hash(y)
 - They are deterministic (hash(x) will always return the same value)
- We can use these hash functions to determine which bucket an arbitrary element belongs in in $O(1)$ time
Hash Function Recap

- We now have *pseudo-random* hash functions that run in $O(1)$
 - They act as if they are uniformly random
 - Will evenly distribute elements to buckets
 - $\text{hash}(x)$ is uncorrelated with $\text{hash}(y)$
 - They are deterministic ($\text{hash}(x)$ will always return the same value)
- We can use these hash functions to determine which bucket an arbitrary element belongs in in $O(1)$ time
- There are expected to be n/N elements in that bucket
 - So runtime for all operations is expected $O(1) + O(n/N) = \text{expected } O(n)$
Hash Functions + Buckets

Everything is: \[O \left(\frac{n}{N} \right) \]

Let’s call \(\alpha = \frac{n}{N} \) the load factor.
Hash Functions + Buckets

Idea: Make α a constant

Everything is: $O\left(\frac{n}{N}\right)$

Let’s call $\alpha = \frac{n}{N}$ the load factor.
Hash Functions + Buckets

Everything is: \(O \left(\frac{n}{N} \right) \)

Let’s call \(\alpha = \frac{n}{N} \) the load factor.

Idea: Make \(\alpha \) a constant

Fix an \(\alpha_{\text{max}} \) and start requiring that \(\alpha \leq \alpha_{\text{max}} \)
Hash Functions + Buckets

Everything is: \(O \left(\frac{n}{N} \right) \)
Let’s call \(\alpha = \frac{n}{N} \) the load factor.

Idea: Make \(\alpha \) a constant

Fix an \(\alpha_{\text{max}} \) and start requiring that \(\alpha \leq \alpha_{\text{max}} \)

What do we do when this constraint is violated?
Hash Functions + Buckets

Idea: Make α a constant

Fix an α_{max} and start requiring that $\alpha \leq \alpha_{\text{max}}$

Let's call $\alpha = \frac{n}{N}$ the load factor.

What do we do when this constraint is violated? Resize!
Rehashing

When we insert an element that would exceed the load factor we:

1. Resize the underlying array from N_{old} to N_{new}
2. Rehash all of the elements from their old bucket to their new bucket
 a. Element x moves from \(\text{hash}(x) \mod N_{old} \) to \(\text{hash}(x) \mod N_{new} \)
Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in?
Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in? 65 % 6 = 5

Now we want to resize the array to size 8. Where do we move x?
Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in? 65 % 6 = 5

Now we want to resize the array to size 8. Where do we move x? 65 % 8 = 1
Rehashing

How long will it take to rehash every element after we resize?

Related Question: How do we iterate through a hash table?
Iterating over a Hash Table
Iterating over a Hash Table

Start at the first bucket

0 1 2 3 4

A C E B D F

Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat

How long does it take?
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat

How long does it take? $O(N + n)$
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat

How long does it take? $O(N + n)$
Iterating over a Hash Table

Start at the first bucket
Iterate through that bucket
Move to the next bucket
...and repeat

How long does it take? $O(N + n)$

Visit every bucket
Visit every element in each bucket
So how long does it take to rehash an entire hash table with \(n \) elements and \(N \) buckets?
So how long does it take to rehash an entire hash table with n elements and N buckets?

Rehashing an individual element costs $O(1)$.
Rehashing

So how long does it take to rehash an entire hash table with \(n \) elements and \(N \) buckets?

Rehashing an individual element costs \(O(1) \)

Iterating through each element costs \(O(N + n) \)
So how long does it take to rehash an entire hash table with n elements and N buckets?

Rehashing an individual element costs $O(1)$

Iterating through each element costs $O(N + n)$

Rehashing costs: $O(N + n)$
Rehashing

When we insert an element that would exceed the load factor we:

1. Resize the underlying array from N_{old} to N_{new}
2. Rehash all of the elements from their old bucket to their new bucket
 a. Element x moves from $\text{hash}(x) \% N_{old}$ to $\text{hash}(x) \% N_{new}$
Rehashing

When we insert an element that would exceed the load factor we:

1. Resize the underlying array from N_{old} to N_{new}
2. Rehash all of the elements from their old bucket to their new bucket
 a. Element x moves from $\text{hash}(x) \mod N_{old}$ to $\text{hash}(x) \mod N_{new}$

How long does this take?

1. Allocate the new array: $O(1)$
2. Rehash every element from the old array to the new: $O(N_{old} + n)$
3. Free the old array: $O(1)$

Total: $O(N_{old} + n)$
When we insert an element that would exceed the load factor we:
1. Resize the underlying array from N_{old} to N_{new}
2. Rehash all of the elements from their old bucket to their new bucket
 a. Element x moves from $\text{hash}(x) \mod N_{old}$ to $\text{hash}(x) \mod N_{new}$

How long does this take?
1. Allocate the new array: $O(1)$
2. Rehash every element from the old array to the new: $O(N_{old} + n)$
3. Free the old array: $O(1)$
Total: $O(N_{old} + n)$

How do we pick N_{new}?
Rehashing

Whenever $\alpha > \alpha_{\text{max}}$, double the size of the array (remember ArrayBuffers).

If we start with N buckets and insert n elements:

1. First rehash happens at $n_1 = \alpha_{\text{max}} \times N$: goes from N to $2N$
Rehashing

Whenever $\alpha > \alpha_{\text{max}}$, double the size of the array (remember ArrayBuffer).

If we start with N buckets and insert n elements:

1. First rehash happens at $n_1 = \alpha_{\text{max}} \times N$: goes from N to $2N$
2. Second rehash happens at $n_2 = \alpha_{\text{max}} \times 2N$: goes from $2N$ to $4N$
Rehashing

Whenever \(\alpha > \alpha_{\text{max}} \), double the size of the array (remember ArrayBuffers)

If we start with \(N \) buckets and insert \(n \) elements:

1. First rehash happens at \(n_1 = \alpha_{\text{max}} \times N \): goes from \(N \) to \(2N \)
2. Second rehash happens at \(n_2 = \alpha_{\text{max}} \times 2N \): goes from \(2N \) to \(4N \)
3. Third rehash happens at \(n_3 = \alpha_{\text{max}} \times 4N \): goes from \(4N \) to \(8N \)
Rehashing

Whenever $\alpha > \alpha_{\text{max}}$, double the size of the array (remember ArrayBuffers)

If we start with N buckets and insert n elements:

1. First rehash happens at $n_1 = \alpha_{\text{max}} \times N$: goes from N to $2N$
2. Second rehash happens at $n_2 = \alpha_{\text{max}} \times 2N$: goes from $2N$ to $4N$
3. Third rehash happens at $n_3 = \alpha_{\text{max}} \times 4N$: goes from $4N$ to $8N$

...

j. jth rehash happens at $n_j = \alpha_{\text{max}} \times 2^{j-1}N$: goes from $2^{j-1}N$ to 2^jN
Total Work

With n insertions, choose j s.t. $n = 2^j \alpha_{\text{max}}$

\[2^j = n / \alpha_{\text{max}} \]

\[j = \log \left(n / \alpha_{\text{max}} \right) \]

\[j = \log(n) - \log(\alpha_{\text{max}}) \]

\[j \leq \log(n) \quad \leftarrow \text{Number of rehashes} \]
Total Work

Rehashes required: $\leq \log(n)$

The ith rehash: $O(2^iN)$

\[
\sum_{i=0}^{\log(n)} O(2^i N) = O \left(N \sum_{i=0}^{\log(n)} 2^i \right) = O(2^{\log(n)+1} - 1) = O(n)
\]

So $O(n)$ work is required to do n insertions \rightarrow Insert cost is amortized $O(1)$