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Picking a Hash Function

What function could we use that would evenly distribute values to buckets?

Wacky Idea: Have h(x) return a random value in [0,N)

(This makes apply impossible…but bear with me)
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Random Hash Function

…given this information, what do the 
runtimes of our operations look like?



Random Hash Function

Expected runtime of insert, apply, remove: O(n/N)

Worst-Case runtime of insert, apply, remove: O(n)



Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y



Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y

We then use modulus to fit this 
random value into the size of 
our hash table
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The modulus function takes any integers n and d, and returns a number r in 
the range [0, d), such that n = q * d + r.
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Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in 
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

0   1     2        3        4        5        6
7   8     9        10     11      12      13
14     15      16      17     18      19      20



Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in 
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73, 
what bucket would it go in?
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Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in 
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73, 
what bucket would it go in? 73 % 7 = 3

0 1 2 3 4 5 6
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Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)
● We can use these hash functions to determine which bucket an 

arbitrary element belongs in in O(1) time
● There are expected to be n/N elements in that bucket

○ So runtime for all operations is expected O(1) + O(n/N) = expected O(n)



Hash Functions + Buckets
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Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?
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Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated? Resize!



Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew



Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65
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Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in? 65 % 6 =  5

Now we want to resize the array to size 8. Where do we move x? 65 % 8 = 1

0 1 2 3 4 5 6X

0 1 2 3 4 5 6 5 6X



Rehashing

How long will it take to rehash every element after we resize?

Related Question: How do we iterate through a hash table?
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Start at the first bucket

Iterate through that bucket
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Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take? O(N + n)

0 1 2 3 4 5 6CD A B
EF

D F A C E B

Visit every bucket Visit every element in each bucket
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So how long does it take to rehash an entire hash table with n elements 
and N buckets?
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Rehashing

So how long does it take to rehash an entire hash table with n elements 
and N buckets?

Rehashing an individual element costs O(1)

Iterating through each element costs O(N + n)

Rehashing costs: O(N + n)
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Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

How long does this take?
1. Allocate the new array: O(1)
2. Rehash every element from the old array to the new: O(Nold + n)
3. Free the old array: O(1)
Total: O(Nold + n)

How do we pick Nnew?
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Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayBuffers)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N
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Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayBuffers)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N
2. Second rehash happens at n2 = 𝛂max ⨉ 2N: goes from 2N to 4N
3. Third rehash happens at n3 = 𝛂max ⨉ 4N: goes from 4N to 8N

…

j. jth rehash happens at nj = 𝛂max ⨉ 2j-1N: goes from 2j-1N to 2jN



Total Work

With n insertions, choose j s.t. n = 2j𝛂max

2j = n / 𝛂max

j = log (n / 𝛂max)

j = log(n) - log(𝛂max)

j ≤ log(n) ← Number of rehashes



Total Work

Rehashes required: ≤ log(n)

The ith rehash: O(2iN)

So O(n) work is required to do n insertions → Insert cost is amortized O(1)


