
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

HashTables

mailto:epmikida@buffalo.edu

Picking a Hash Function

What function could we use that would evenly distribute values to buckets?

Picking a Hash Function

What function could we use that would evenly distribute values to buckets?

Wacky Idea: Have h(x) return a random value in [0,N)

(This makes apply impossible…but bear with me)

Random Hash Function

Random Hash Function

Random Hash Function

Random Hash Function

Random Hash Function

…given this information, what do the
runtimes of our operations look like?

Random Hash Function

Expected runtime of insert, apply, remove: O(n/N)

Worst-Case runtime of insert, apply, remove: O(n)

Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y

Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y

We then use modulus to fit this
random value into the size of
our hash table

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r.

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r.

quotient divisor remainder

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

0 1 2 3 4 5 6
7 8 9 10 11 12 13

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

0 1 2 3 4 5 6

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73,
what bucket would it go in?

0 1 2 3 4 5 6

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73,
what bucket would it go in? 73 % 7 = 3

0 1 2 3 4 5 6

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)
● We can use these hash functions to determine which bucket an

arbitrary element belongs in in O(1) time

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)
● We can use these hash functions to determine which bucket an

arbitrary element belongs in in O(1) time
● There are expected to be n/N elements in that bucket

○ So runtime for all operations is expected O(1) + O(n/N) = expected O(n)

Hash Functions + Buckets

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated? Resize!

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in?

0 1 2 3 4 5 6

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in? 65 % 6 = 5

Now we want to resize the array to size 8. Where do we move x?

0 1 2 3 4 5 6X

0 1 2 3 4 5 6 5 6

Rehashing

Let's say we have a hash table of size 6, and hash(x) = 65

What bucket does it belong in? 65 % 6 = 5

Now we want to resize the array to size 8. Where do we move x? 65 % 8 = 1

0 1 2 3 4 5 6X

0 1 2 3 4 5 6 5 6X

Rehashing

How long will it take to rehash every element after we resize?

Related Question: How do we iterate through a hash table?

Iterating over a Hash Table

0 1 2 3 4 5 6CD A B
EF

Iterating over a Hash Table

Start at the first bucket
0 1 2 3 4 5 6CD A B

EF

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket
0 1 2 3 4 5 6CD A B

EF

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

0 1 2 3 4 5 6CD A B
EF

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F A

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F A C E

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

0 1 2 3 4 5 6CD A B
EF

D F A C E B

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take?

0 1 2 3 4 5 6CD A B
EF

D F A C E B

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take? O(N + n)

0 1 2 3 4 5 6CD A B
EF

D F A C E B

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take? O(N + n)

0 1 2 3 4 5 6CD A B
EF

D F A C E B

Visit every bucket

Iterating over a Hash Table

Start at the first bucket

Iterate through that bucket

Move to the next bucket

…and repeat

How long does it take? O(N + n)

0 1 2 3 4 5 6CD A B
EF

D F A C E B

Visit every bucket Visit every element in each bucket

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs O(1)

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs O(1)

Iterating through each element costs O(N + n)

Rehashing

So how long does it take to rehash an entire hash table with n elements
and N buckets?

Rehashing an individual element costs O(1)

Iterating through each element costs O(N + n)

Rehashing costs: O(N + n)

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

How long does this take?
1. Allocate the new array: O(1)
2. Rehash every element from the old array to the new: O(Nold + n)
3. Free the old array: O(1)
Total: O(Nold + n)

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

How long does this take?
1. Allocate the new array: O(1)
2. Rehash every element from the old array to the new: O(Nold + n)
3. Free the old array: O(1)
Total: O(Nold + n)

How do we pick Nnew?

Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayBuffers)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N

Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayBuffers)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N
2. Second rehash happens at n2 = 𝛂max ⨉ 2N: goes from 2N to 4N

Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayBuffers)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N
2. Second rehash happens at n2 = 𝛂max ⨉ 2N: goes from 2N to 4N
3. Third rehash happens at n3 = 𝛂max ⨉ 4N: goes from 4N to 8N

Rehashing

Whenever 𝛂 > 𝛂max, double the size of the array (remember ArrayBuffers)

If we start with N buckets and insert n elements:
1. First rehash happens at n1 = 𝛂max ⨉ N: goes from N to 2N
2. Second rehash happens at n2 = 𝛂max ⨉ 2N: goes from 2N to 4N
3. Third rehash happens at n3 = 𝛂max ⨉ 4N: goes from 4N to 8N

…

j. jth rehash happens at nj = 𝛂max ⨉ 2j-1N: goes from 2j-1N to 2jN

Total Work

With n insertions, choose j s.t. n = 2j𝛂max

2j = n / 𝛂max

j = log (n / 𝛂max)

j = log(n) - log(𝛂max)

j ≤ log(n) ← Number of rehashes

Total Work

Rehashes required: ≤ log(n)

The ith rehash: O(2iN)

So O(n) work is required to do n insertions → Insert cost is amortized O(1)

