CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

HashTable Variants

Announcements and Feedback

• WA3 due on Sunday (Submission open on AG now)

Recap of HashTables (so far...)

Current Design: HashTable with Chaining

- Array of buckets
- Each bucket is the head of a linked list (a "chain" of elements)

Expected Runtime:

Expected Runtime:

1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$

Remember: we don't let α exceed a constant value

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$
- 3. Total: $O(c_{hash} + \alpha \cdot c_{equality}) = O(1)$

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$
- 3. Total: $O(c_{hash} + \alpha \cdot c_{equality}) = O(1)$

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$
- 3. Total: $O(c_{hash} + \alpha \cdot c_{equality}) = O(1)$

Unqualified Worst-Case:

1. Find the bucket (call our hash function): $O(c_{hash}) = O(1)$

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$
- 3. Total: $O(c_{hash} + \alpha \cdot c_{equality}) = O(1)$

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(n \cdot c_{equality}) = O(n)$

Expected Runtime:

- 1. Find the bucket (call our hash function): O(c_{hash}) = O(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$
- 3. Total: $O(c_{hash} + \alpha \cdot c_{equality}) = O(1)$

Unqualified Worst-Case:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(n \cdot c_{equality}) = O(n)$

Note: The expected number of equality checks and the worst-case number of equality checks are where these costs differ

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$
- 3. Total: $O(c_{hash} + \alpha \cdot c_{equality}) = O(1)$

- 1. Find the bucket (call our hash function): $O(c_{hash}) = O(1)$
- 2. Find the record in the bucket: $O(n \cdot c_{equality}) = O(n)$
- 3. Total: $O(c_{hash} + n \cdot c_{equality}) = O(n)$

Runtime for remove(x)

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$
- 3. Remove (by reference): **O(1)**

4. Total:
$$O(c_{hash} + \alpha \cdot c_{equality} + 1) = O(1)$$

- 1. Find the record in the bucket: $O(n \cdot c_{equality}) = O(n)$
- 2. Total: $O(c_{hash} + n \cdot c_{equality} + 1) = O(n)$

Runtime for remove(x)

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(c_{hash}) = **O**(1)
- 2. Find the record in the bucket: $O(\alpha \cdot c_{equality}) = O(1)$
- 3. Remove (by reference): O(1)
- 4. Total: $O(c_{hash} + \alpha \cdot c_{equality} + 1) = O(1)$ Only one extra constant-time step to remove

- 1. Find the record in the bucket: $O(n \cdot c_{equality}) = O(n)$
- 2. Total: $O(c_{hash} + n \cdot c_{equality} + 1) = O(n)$

Runtime for insert(x)

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(c_{hash}) = **O**(1)
- 2. Remove **x** from bucket if present: $O(\alpha \cdot c_{equality} + 1)$
- 3. Prepend to bucket: **0(1)**
- 4. Rehash if needed: **O**(**n** · **c**_{hash} + **N**) (amortized O(1))

5. Total:
$$O(c_{hash} + \alpha \cdot c_{equality} + 3) = O(1)$$

Unqualified Worst-Case:

1. Remove **x** from bucket if present: $O(n \cdot c_{equality} + 1) = O(n)$

2. Total:
$$O(c_{hash} + n \cdot c_{equality} + 3) = O(n)$$

Runtime for insert(x)

Expected Runtime:

- 1. Find the bucket (call our hash function): **O**(**c**_{hash}) = **O**(1)
- 2. Remove **x** from bucket if present: $O(\alpha \cdot c_{equality} + 1)$
- 3. Prepend to bucket: O(1)
- 4. Rehash if needed: $O(n \cdot c_{hash} + N)$ (amortized O(1)) step to prepend, and the potentially the need to
- 5. Total: $O(c_{hash} + \alpha \cdot c_{equality} + 3) = O(1)$

Unqualified Worst-Case:

1. Remove **x** from bucket if present: $O(n \cdot c_{equality} + 1) = O(n)$

2. Total:
$$O(c_{hash} + n \cdot c_{equality} + 3) = O(n)$$

One additional constant-time step to prepend, and then potentially the need to rehash, but that is amortized O(1)

HashTable Drawbacks?

...So the expected runtime of all operations is **O(1)** Why would you ever use any other data structure?

HashTable Drawbacks?

...So the expected runtime of all operations is **O(1)**

Why would you ever use any other data structure?

- HashTables do not preserve ordering
- HashTables may waste a lot of memory
- Rehashing can be expensive
- Only **guarantee** on lookup time is that it is **O(n)**

HashTable Drawbacks?

...So the expected runtime of all operations is **O(1)**

Why would you ever use any other data structure?

- HashTables do not preserve ordering
- HashTables may waste a lot of memory
- Rehashing can be expensive
- Only guarantee on lookup time is that it is O(n)

These can be partially addressed by some HashTable variations

Collision Resolution

- When two records are assigned to the same bucket, this is called a **collision**
 - With chaining, collisions are resolved by treating each bucket as a list
 - May result in even more empty buckets (more wasted space)
- Two more collision resolution techniques try to help with this issue
 - Open Addressing
 - Cuckoo Hashing

HashTables with Chaining

hash(A) = 4

hash(B) = 5

- hash(C) = 5
- hash(D) = 2

hash(E) = 6

hash(F) = 2

HashTables with Chaining

hash(A) = 4

hash(B) = 5

- hash(C) = 5
- hash(D) = 2
- hash(E) = 6
- hash(F) = 2

Collisions are resolved by adding the element to the buckets linked list

 $hash(A) = 4 \leftarrow no \ collision$ hash(B) = 5hash(C) = 5hash(D) = 2hash(E) = 6hash(F) = 4

With Open Addressing collisions are resolved by "cascading" to the next available bucket

hash(A) = 4 $hash(B) = 5 \leftarrow no \ collision$ hash(C) = 5hash(D) = 2hash(E) = 6hash(F) = 4

With Open Addressing collisions are resolved by "cascading" to the next available bucket

0

hash(A) = 4hash(B) = 5hash(D) = 2hash(E) = 6hash(F) = 4

With Open Addressing collisions are resolved by "cascading" to the next available bucket

1

2

3

B

6

hash(A) = 4

hash(B) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

With Open Addressing collisions are resolved by "cascading" to the next available bucket

hash(A) = 4

hash(B) = 5

hash(C) = 5

0 1 🛃 3 🛱 ቻ 🪱

hash(D) = 2 ← no collision!

hash(E) = 6

With Open Addressing collisions are resolved by "cascading" to the next available bucket

hash(F) = 4

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

With Open Addressing collisions are resolved by "cascading" to the next available bucket

hash(E) = 6 ← collision! cascade to 0

hash(F) = 4

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = $4 \leftarrow$ collision! Cascade all the way to 1

With Open Addressing collisions are resolved by "cascading" to the next available bucket

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

With Open Addressing collisions are resolved by "cascading" to the next available bucket

hash(F) = 4 ← collision! Cascade all the way to 1

How does lookup work?

hash(A) = 4

hash(B) = 5

Bucket 4 does not contain F. Are we sure F does not exist?

hash(E) = 6

hash(D) = 2

hash(F) = 4

hash(A) = 4

hash(B) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

Bucket 4 does not contain F. Are we sure F does not exist? **No...it could have cascaded!**

hash(A) = 4

hash(B) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

Bucket 5 does not contain F. Are we sure F does not exist? **No...it could have cascaded!**

hash(A) = 4

hash(B) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

Bucket 6 does not contain F. Are we sure F does not exist? **No...it could have cascaded!**

hash(A) = 4

hash(B) = 5

hash(D) = 2

hash(E) = 6

Bucket 0 does not contain F. Are we sure F does not exist? No...it could have cascaded!

hash(F) = 4

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

Bucket 1 does not contain F. Are we sure F does not exist? **Yes! If F existed it would be here, so apply(F) returns False.**

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

$$hash(C) = 5$$

hash(D) = 2

hash(E) = 6

hash(F) = 4

Bucket 1 does not contain F. Are we sure F does not exist? **Yes! If F existed it would be here, so apply(F) returns False.**

What if we insert F then remove E?

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

- hash(C) = 5
- hash(D) = 2

hash(E) = 6

hash(F) = 4

apply(F) would fail in this case because it would check bucket 0 and conclude F doesn't exist!

Remove must also deal with potential cascading!

What if we insert F then remove E?

Removals with Open Addressing

To remove elements with Open Addressing:

- 1. First find the element (if it exists)
- 2. Remove the element
 - a. Check all following elements in a contiguous block and move them up
 - b. Don't move any element Y to a position that comes before hash(Y)

Open Addressing Runtime

Cascading to the next bucket(s) is called probing

- Linear Probing: If collision, cascade to hash(X) + ci
- **Quadratic Probing:** If collision, cascade to hash(X) + ci²

Runtime Costs:

- Chaining is dominated by searching the chain
- Open Addressing is dominated by probing
 - In both cases, with low α we expect operations to be **O(1)**
 - Open addressing will occupy more buckets (waste less space)

Open Addressing can have arbitrarily long chains

Can we reduce the chance of cascading for some operations?

Idea: Use two hash functions, hash₁ and hash₂

To insert a record **X**:

- 1. If $hash_1(\mathbf{X})$ and $hash_2(\mathbf{X})$ are both available, pick one at random
- 2. If only one of those buckets is available, pick the available bucket
- 3. If neither is available, pick one at random and evict the record there
 - a. Insert **X** in this bucket
 - b. Insert the evicted record following the same procedure

 $hash_{1}(A) = 1 hash_{2}(A) = 3$ $hash_{1}(B) = 2 hash_{2}(B) = 4$ $hash_{1}(C) = 2 hash_{2}(C) = 1$ $hash_{1}(D) = 4 hash_{2}(D) = 6$

$$hash_1(E) = 3$$
 $hash_2(E) = 4$

$$hash_{1}(A) = 1 \qquad hash_{2}(A) = 3$$
$$hash_{1}(B) = 2 \qquad hash_{2}(B) = 4$$
$$hash_{1}(C) = 2 \qquad hash_{2}(C) = 1$$
$$hash_{1}(D) = 4 \qquad hash_{2}(D) = 6$$

$$hash_{1}(E) = 3$$
 $hash_{2}(E) = 4$

$$hash_{1}(A) = 1 \qquad hash_{2}(A) = 3$$
$$hash_{1}(B) = 2 \qquad hash_{2}(B) = 4$$

$$hash_1(C) = 2$$
 $hash_2(C) = 1$

$$hash_1(D) = 4$$
 $hash_2(D) = 6$

 $hash_1(E) = 3$ $hash_2(E) = 4$

С

 $hash_1(A) = 1$ $hash_2(A) = 3$ hash

$$(B) = 2$$
 hash₂(B) = 4

$$hash_1(C) = 2$$
 $hash_2(C) = 1$

$$hash_1(D) = 4$$
 $hash_2(D) = 6$

 $hash_{1}(E) = 3$ $hash_{2}(E) = 4$

В

B can only go in 4 now, but 4 is free

$$hash_1(A) = 1 \qquad hash_2(A) = 3$$
$$hash_1(B) = 2 \qquad hash_2(B) = 4$$

$$hash_1(C) = 2$$
 $hash_2(C) = 1$

$$hash_1(D) = 4$$
 $hash_2(D) = 6$

$$hash_1(E) = 3$$
 $hash_2(E) = 4$

$$hash_{1}(A) = 1 \qquad hash_{2}(A) = 3$$
$$hash_{1}(B) = 2 \qquad hash_{2}(B) = 4$$
$$hash_{1}(C) = 2 \qquad hash_{2}(C) = 1$$
$$hash_{1}(D) = 4 \qquad hash_{2}(D) = 6$$
$$hash_{1}(E) = 3 \qquad hash_{2}(E) = 4$$

$$hash_1(A) = 1 \qquad hash_2(A) = 3$$
$$hash_1(B) = 2 \qquad hash_2(B) = 4$$

$$hash_1(C) = 2$$
 $hash_2(C) = 1$

$$hash_1(D) = 4$$
 $hash_2(D) = 6$

$$hash_1(E) = 3$$
 $hash_2(E) = 4$

$$hash_1(A) = 1$$
 $hash_2(A) = 3$

$$hash_1(B) = 2$$
 $hash_2(B) = 4$

$$hash_1(C) = 2$$
 $hash_2(C) = 1$

$$hash_1(D) = 4$$
 $hash_2(D) = 6$

$$hash_1(E) = 3$$
 $hash_2(E) = 4$

What if we try to insert **F** which hashes to either 1 or 3?

$$hash_1(A) = 1$$
 $hash_2(A) = 3$

$$hash_1(B) = 2$$
 $hash_2(B) = 4$

$$hash_1(C) = 2$$
 $hash_2(C) = 1$

$$hash_1(D) = 4$$
 $hash_2(D) = 6$

$$hash_1(E) = 3$$
 $hash_2(E) = 4$

So with Cuckoo Hashing, we may have to rehash early, and may follow long chains of evictions inserting, but...

What is the runtime of apply/remove?

So with Cuckoo Hashing, we may have to rehash early, and may follow long chains of evictions inserting, but...

What is the runtime of apply/remove?

- 1. Check 2 different buckets: O(1)
- 2. That's it...no chaining, cascading etc...

Apply and remove are <u>GUARANTEED</u> O(1) with Cuckoo Hashing