CSE 250
Data Structures

HashTable Applications
Announcements

- PA4 write-up released
 - Testing due 4/30 (Autograder will be up soon)
 - Implementation due 5/7
 - It's about common HashTable applications (so is today's lecture...)

Data Science is Everywhere

- The Corporate World (i.e., MANGA)
- Open Data → Civic Computing
- Science
- Internet of Things
- ...etc
Data is BIG

Remember: $O(f(n))$ tells us the behavior of an algorithm as n gets big

Real world problems are BIG → 100s of MBs, GBs, TBs or more of data

- Think about how much data Facebook, Google, etc have access to
- Recall the OpenData map of Buffalo...that was JUST Buffalo
- How many atoms in a bucket of water? How many stars in the galaxy?
- How many smart devices in this room? at UB?
Data is BIG

Remember: $O(f(n))$ tells us the behavior of an algorithm as n gets big

Real world problems are BIG \rightarrow 100s of MBs, GBs, TBs or more of data

- Think about how much data Facebook, Google, etc have access to
- Recall the OpenData map of Buffalo...that was JUST Buffalo
- How many atoms in a bucket of water? How many stars in the galaxy?
- How many smart devices in this room? at UB?

Today we'll look at a few common patterns that deal with big data (that will be especially useful for PA4...)
Usage Pattern 1 (in MANGA)

Dataset: Sales - A sequence of purchase records
- **productID:** Int
- **date:** Date
- **volume:** Int

Objective: Find the 100 most purchased products from the last month
Usage Pattern 1 (in Open Data)

Dataset: Traffic Violations - A sequence of infraction records

- **blockID:** Int
- **infraction:** InfractionType
- **date:** Date

Objective: Find the fraction of parking tickets that were issued in each block over the last year
Usage Pattern 1 (in Science)

Dataset: Vaccinations - Records on COVID vaccination data
- `patientID`: Int
- `doseVolume`: Double
- `contractedCOVID`: Boolean

Objective: Find the dosage that minimizes the rate of contracting COVID
Usage Pattern 1 (in IoT)

Dataset: Train Logistics - Logs related to train travel distances
- engineID: Int
- date: Date
- kmTraveledToday: Double

Objective: If a train engine must be serviced every 30,000km, determine which train engines currently need service
Usage Pattern 1

What do all these use cases have in common?

What basic task do we need to do to meet these objectives?
Usage Pattern 1 - Aggregation!

What do all these use cases have in common?

What basic task do we need to do to meet these objectives?

We need to aggregate data spread across multiple records with a common ID
Usage Pattern 1: Aggregation

Examples:
- "sum up __, for each __"
- "find the average __, by __"
- "count the number of __, for __"
- "what is the biggest/smallest __, for each __"

Pattern:
1. (Optionally) Group records by a common "Group By" key
2. For each group, compute a statistic (ie sum, count, avg, min, max)
How might we accomplish this efficiently? How much time is required?
def groupBySum(data: Seq[SaleRecord]): Map[Int, Int] = {
 val result = mutable.HashMap[Int, Int]()
 for (record <- data) {
 result(record.productId) = result.getOrElse(record.productId, 0) + record.quantity
 }
 return result.toMap
}

An example of the aggregation pattern for the MANGA use case described previously
def groupBySum(data: Seq[SaleRecord]): Map[Int, Int] = {
 val result = mutable.HashMap[Int, Int]()
 for (record <- data) {
 result(record.productId) = result.getOrElse(record.productId, 0) + record.quantity
 }
 return result.toMap
}

An example of the aggregation pattern for the MANGA use case described previously
def groupBySum(data: Seq[SaleRecord]): Map[Int, Int] =
{
 val result = mutable.HashMap[Int, Int]() // For each record in the data set...
 for(record <- data){
 result(record.productId) = result.getOrElse(record.productId, 0) + record.quantity // ...hash it by the desired key...
 }
 return result.toMap
}

An example of the aggregation pattern for the MANGA use case described previously
Usage Pattern 1: Aggregation

```scala
def groupBySum(data: Seq[SaleRecord]): Map[Int, Int] = {
  val result = mutable.HashMap[Int, Int]()
  for (record <- data) {
    result(record.productId) = result.getOrElse(record.productId, 0) + record.quantity
  }
  return result.toMap
}
```

An example of the aggregation pattern for the MANGA use case described previously
def groupBySum(data: Seq[SaleRecord]): Map[Int, Int] = {
 val result = mutable.HashMap[Int, Int]()
 for (record <- data) {
 result(record.productId)
 = result.getOrElse(record.productId, 0) + record.quantity
 }
 return result.toMap
}

An example of the aggregation pattern for the MANGA use case described previously
def groupBySum(data: Seq[SaleRecord]): Map[Int, Int] = {
 val result = mutable.HashMap[Int, Int]()
 for (record <- data) {
 result(record.productId)
 = result.getOrElse(record.productId, 0) + record.quantity
 }
 return result.toMap
}

An example of the aggregation pattern for the MANGA use case described previously

Complexity? expected $O(|data|)$ (each update is expected $O(1)$)
Potential Issues

Issue 1: Data is too big to fit in memory
 - ie All of Amazon or Google's users
Potential Issues

Issue 1: Data is too big to fit in memory
- ie All of Amazon or Google's users

Idea: Use disk for storage
- **Problem:** Group-by keys are not in any specific order...
- **Idea:** Do an initial $O(n)$ pass to organize the data
Consider a BufferedWriter

It has a fixed size, we can add to it, and when it becomes full, it empties itself to disk...
Buffered Writer

Consider a BufferedWriter

It has a fixed size, we can add to it, and when it becomes full, it empties itself to disk...
Buffered Writer

Consider a BufferedWriter

It has a fixed size, we can add to it, and when it becomes full, it empties itself to disk...
Buffered Writer

Consider a BufferedWriter

It has a fixed size, we can add to it, and when it becomes full, it empties itself to disk...
Hash Partitioning

Create multiple buffered writers for specific keys...

hash(key) % N = 0

hash(key) % N = 1

hash(key) % N = N-1
Hash Partitioning

Create multiple buffered writers for specific keys...

<table>
<thead>
<tr>
<th>hash(key) % N = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash(key) % N = 1</td>
</tr>
<tr>
<td>hash(key) % N = N-1</td>
</tr>
</tbody>
</table>

File N-1
Hash Partitioning

Each writer will result in a file...and all instances of a key will be in the same file

$O(n)$ total writes to disk
Can load a single file and compute aggregate for just that file before moving to the next file.

$O(n)$ total reads from disk
Potential Issues

Issue 2: Data is too big to even fit on one computer!

Solution: Use multiple computers (distributed computation)

- Idea 1: Compute each aggregate locally, then send those partial results to be aggregated together
- Idea 2: Hash partition (shuffle) to each computer then compute locally
Usage Pattern 2 (in MANGA)

Dataset 1: Sales - A sequence of purchase records
- `productID`: Int
- `date`: Date
- `volume`: Int

Dataset 2: Pricing - A sequence of product IDs and their price
- `productID`: Int
- `price`: Double

Objective: Find the 100 products with the highest gross profit
Usage Pattern 2 (in Open Data)

Dataset 1: Traffic Violations - A sequence of infraction records
- blockID: Int
- infraction: InfractionType
- date: Date

Dataset 2: Tax Assessments - A sequence of building tax assessments
- buildingOwner: String
- blockID: Int
- assessment: Double

Objective: Plot total taxes vs number of tickets for a given block
Usage Pattern 2 (in Science)

Dataset 1: Trials - A sequence of vaccination doses
- **patientID:** Int
- **doseVolume:** Double

Dataset 2: Infections - A sequence COVID infection reports
- **patientID:** String
- **date:** Date

Objective: Find the dosage that minimizes the rate of contracting COVID
Usage Pattern 2 (in IoT)

Dataset: Train Logistics - Logs related to train travel distances
- engineID: Int
- date: Date
- kmTraveledToday: Double
- locationID: Int

Dataset 2: Locations - A list of locations with service stations
- locationID: Int
- serviceCapacity: Int

Objective: Determine if any locations have more trains in need of service than they have capacity for.
Usage Pattern 2

What do all these use cases have in common?
What basic task do we need to do to meet these objectives?
Usage Pattern 2: Joins

What do all these use cases have in common?
What basic task do we need to do to meet these objectives?

We need to join multiple different datasets to match up corresponding records in each based on some common attribute.
Usage Pattern 2: Joins

Examples:
- "combine these datasets"
- "look up ___ for each ___"
- "join ___ and ___ on ___"

Pattern:
1. For each record in one dataset...
 a. Find the corresponding record(s) in the second dataset
2. Output each pair of matched records
Usage Pattern 2: Joins

How might we accomplish this efficiently? How much time is required?
def NLJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]) : mutable.Buffer[(SaleRecord, ProductPrice)] =
{
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for(s <- sales){
 for(p <- prices){
 if(s.productId == p.productId){
 result += ((s, p))
 }
 }
 }
 result
}
def NLJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]) : mutable.Buffer[(SaleRecord, ProductPrice)] =
{
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for(s <- sales){
 for(p <- prices){
 if(s.productId == p.productId){
 result += ((s, p))
 }
 }
 }
 result
}

For each record in the first table...
...search the second table for all records that match on the common key
def NLJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice])
 : mutable.Buffer[(SaleRecord, ProductPrice)] =
{
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for(s <- sales){
 for(p <- prices){
 if(s.productId == p.productId){
 result += ((s, p))
 }
 }
 }
 result
}
Nested-Loop Join

```scala
def NLJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] =
{
  val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
  for (s <- sales){
    for (p <- prices){
      if (s.productId == p.productId){
        result += (s, p)
      }
    }
  }
  result
}
```

Complexity? $O(|sales| \times |prices|)$
Nested-Loop Join

def NLJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]) :
 mutable.Buffer[(SaleRecord, ProductPrice)] =
 {
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for(s <- sales){
 for(p <- prices){
 if(s.productId == p.productId){
 result += ((s, p))
 }
 }
 }
 result
 }

Complexity? $O(|sales| \times |prices|)$

Can we do better? What makes this approach so expensive?
Sort Merge Join

Idea: In merge sort, we saw that the combine step only cost $O(n)$ because the two pieces were already sorted...
def sortMergeJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] =
{
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 val sortedSales = sales.sortBy { _.productId }.iterator.buffered
 val sortedPrices = prices.sortBy { _.productId }.iterator.buffered

 while(sortedSales.hasNext && sortedPrices.hasNext){
 if(sortedSales.head.productId == sortedPrices.head.productId){
 result += (sortedSales.head, sortedPrices.head)
 sortedPrices.next
 } else if(sortedSales.head.productId < sortedPrices.head.productId){
 sortedSales.next
 } else {
 sortedPrices.next
 }
 }

 result
def sortMergeJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] = {
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 val sortedSales = sales.sortBy { _.productId }.iterator.buffered
 val sortedPrices = prices.sortBy { _.productId }.iterator.buffered
 while(sortedSales.hasNext && sortedPrices.hasNext){
 if(sortedSales.head.productId == sortedPrices.head.productId){
 result += ((sortedSales.head, sortedPrices.head))
 sortedPrices.next
 } else if(sortedSales.head.productId < sortedPrices.head.productId){
 sortedSales.next
 } else {
 sortedPrices.next
 }
 }
 result
}
def sortMergeJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] =
{
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 val sortedSales = sales.sortBy { _.productId }.iterator.buffered
 val sortedPrices = prices.sortBy { _.productId }.iterator.buffered

 while(sortedSales.hasNext && sortedPrices.hasNext){
 if(sortedSales.head.productId == sortedPrices.head.productId){
 result += ((sortedSales.head, sortedPrices.head))
 sortedPrices.next
 } else if(sortedSales.head.productId < sortedPrices.head.productId){
 sortedSales.next
 } else {
 sortedPrices.next
 }
}
result
def sortMergeJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] = {
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 val sortedSales = sales.sortBy { _.productId }.iterator.buffered
 val sortedPrices = prices.sortBy { _.productId }.iterator.buffered

 while(sortedSales.hasNext && sortedPrices.hasNext){
 if(sortedSales.head.productId == sortedPrices.head.productId){
 result += (sortedSales.head, sortedPrices.head)
 sortedPrices.next
 } else if(sortedSales.head.productId < sortedPrices.head.productId){
 sortedSales.next
 } else {
 sortedPrices.next
 }
 }

 result
def sortMergeJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]) : mutable.Buffer[(SaleRecord, ProductPrice)] =
{
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 val sortedSales = sales.sortBy { _.productId }.iterator.buffered
 val sortedPrices = prices.sortBy { _.productId }.iterator.buffered

 while(sortedSales.hasNext && sortedPrices.hasNext){
 if(sortedSales.head.productId == sortedPrices.head.productId){
 result += (sortedSales.head, sortedPrices.head)
 sortedPrices.next
 } else if(sortedSales.head.productId < sortedPrices.head.productId) {
 sortedSales.next
 } else {
 sortedPrices.next
 }
 }

 result
}

Complexity? $O(n \log(n))$...but we can still do better
Final Idea: How can we skip the "search" for common keys? A HashTable!
def hashJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] = {
 val indexedPrices = mutable.HashMap[Int, ProductPrice]()
 for(p <- prices){
 indexedPrices(p.productId) = p
 }
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for(s <- sales){
 if(indexedPrices.contains(s.productId)){
 result += ((s, indexedPrices(s.productId)))
 }
 }
 result
}

Build a hash table for the first dataset...
HashJoin

def hashJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] = {
 val indexedPrices = mutable.HashMap[Int, ProductPrice]()
 for(p <- prices){
 indexedPrices(p.productId) = p
 }
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for(s <- sales){
 if(indexedPrices.contains(s.productId)){
 result += ((s, indexedPrices(s.productId))
 }
 }
 result
}

Build a hash table for the first dataset...

...then for each element in the second dataset, probe the HashTable to find matches (in expected \(O(1)\) time per record)
def hashJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] = {
 val indexedPrices = mutable.HashMap[Int, ProductPrice]()
 for(p <- prices){
 indexedPrices(p.productId) = p
 }
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for(s <- sales){
 if(indexedPrices.contains(s.productId)){
 result += ((s, indexedPrices(s.productId)))
 }
 }
 result
}
def hashJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] = {
 val indexedPrices = mutable.HashMap[Int, ProductPrice]()
 for(p <- prices){
 indexedPrices(p.productId) = p
 }
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for(s <- sales){
 if(indexedPrices.contains(s.productId)){
 result += ((s, indexedPrices(s.productId)))
 }
 }
 result
}

Complexity? expected $O(|prices| + |sales|)$
def hashJoin(sales: Seq[SaleRecord], prices: Seq[ProductPrice]): mutable.Buffer[(SaleRecord, ProductPrice)] = {
 val indexedPrices = mutable.HashMap[Int, ProductPrice]()
 for (p <- prices) {
 indexedPrices(p.productId) = p
 }
 val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
 for (s <- sales) {
 if (indexedPrices.contains(s.productId)) {
 result += (s, indexedPrices(s.productId))
 }
 }
 result
}

Complexity? expected $O(|prices| + |sales|)$
Potential Issues

Issue 1: Too much data to fit in memory
 ● **Solution:** Hash Partition both datasets on the join key

Issue 2: Too much data to fit on one computer
 ● **Solution 1:** Hash Partition both datasets on the join key
 ● **Solution 2:** Send only relevant data using a Bloom Filter...
CSE 305: How to build compilers / languages that can easily express common data science patterns

CSE 460: How to organize data to make it easier to find, and apply tricks to make common data science patterns more efficient

CSE 462: How to build systems that automatically pick the best data structure/algorithm for each data science pattern

CSE 486: How to build systems that do these computations at scale