
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

The Memory Hierarchy

mailto:epmikida@buffalo.edu


Announcements

● Autograder for PA4 Tests is now open



LIES!

Lie #1: Accessing any element of an array of any length is O(1)
● This assumes the "RAM" model of computation

○ Simple, but not perfect
● Real-world hardware isn't this simple

○ Memory is hierarchical
○ Non-Uniform Memory Access (NUMA)

Lie #2: The constants don't matter…



Algorithmic Complexity

Remember: O(f(n)) placed bounds on growth functions in general. Not 
necessarily only for runtime growth functions…



Algorithmic Complexity

Remember: O(f(n)) placed bounds on growth functions in general. Not 
necessarily only for runtime growth functions…

Runtime Bounds (or Runtime Complexity)
● The algorithm takes O(...) time



Algorithmic Complexity

Remember: O(f(n)) placed bounds on growth functions in general. Not 
necessarily only for runtime growth functions…

Runtime Bounds (or Runtime Complexity)
● The algorithm takes O(...) time

Memory Bounds (or Memory Complexity)
● The algorithm needs O(...) storage



Algorithmic Complexity

Remember: O(f(n)) placed bounds on growth functions in general. Not 
necessarily only for runtime growth functions…

Runtime Bounds (or Runtime Complexity)
● The algorithm takes O(...) time

Memory Bounds (or Memory Complexity)
● The algorithm needs O(...) storage

I/O Bounds (or I/O Complexity)
● The algorithm performs O(...) accesses to slower memory



The Memory Hierarchy (simplified)

Cache

Memory (RAM)

Solid State Drives (SSDs)

Hard Disk Drives (HDDs, "Spinning Rust")

Faster Bigger



The Memory Hierarchy (simplified)

Cache

SSDs / HDDs

Memory (RAM)…

Cache is made of of many "Lines" 
(~64B in size)

Disk is made up of many "Pages"
(~4KB in size) 



Reading an Array Entry

In order to read an Array Entry:

1. Is the array entry in cache?



Reading an Array Entry

In order to read an Array Entry:

1. Is the array entry in cache?
a. Yes: Return it (1-4 clock cycles)
b. No: Is it in real memory?



Reading an Array Entry

In order to read an Array Entry:

1. Is the array entry in cache?
a. Yes: Return it (1-4 clock cycles)
b. No: Is it in real memory?

i. Yes: Load it into a cache line (10s of cycles)
ii. No: Load it from a page of virtual memory (100s of cycles)



Reading an Array Entry

In order to read an Array Entry:

1. Is the array entry in cache?
a. Yes: Return it (1-4 clock cycles)
b. No: Is it in real memory?

i. Yes: Load it into a cache line (10s of cycles)
ii. No: Load it from a page of virtual memory (100s of cycles)

Tiny constant

OK constant

HUGE constant

In practice, these constants do matter!



Ground Rules: Disk vs RAM

1. All data starts off in a file on disk
a. Need to load data into RAM before accessing it
b. Load data in 4KB pages
c. Amount of RAM is finite

2. Must describe 3 features of an algorithm
a. Number of instructions (runtime complexity)
b. Number of data loads (I/O complexity)
c. Number of pages of RAM required (memory complexity)

Note: Similar rules apply to any pair of levels in the hierarchy



Binary Search

Example:

220 records, 64 bytes each (8 byte key, 56 byte value)

64 MB of data total, 16,384 pages, 64 records per page

How many steps to binary search this data?



Binary Search

Example:

220 records, 64 bytes each (8 byte key, 56 byte value)

64 MB of data total, 16,384 pages, 64 records per page

How many steps to binary search this data? log(220) = 20 steps



Binary Search

Example:

220 records, 64 bytes each (8 byte key, 56 byte value)

64 MB of data total, 16,384 pages, 64 records per page

Let's assume the target is at position 0

16,384 pages



Binary Search

Example:

220 records, 64 bytes each (8 byte key, 56 byte value)

64 MB of data total, 16,384 pages, 64 records per page

Let's assume the target is at position 0

16,384 pages

Step 0
Load 8192



Binary Search

Example:

220 records, 64 bytes each (8 byte key, 56 byte value)

64 MB of data total, 16,384 pages, 64 records per page

Let's assume the target is at position 0

16,384 pages

Step 0
Load 8192

Step 1
Load 4096



Binary Search

Example:

220 records, 64 bytes each (8 byte key, 56 byte value)

64 MB of data total, 16,384 pages, 64 records per page

Let's assume the target is at position 0

16,384 pages

Step 0
Load 8192

Step 1
Load 4096

Step 2
Load 2048

…



Binary Search

Example:

220 records, 64 bytes each (8 byte key, 56 byte value)

64 MB of data total, 16,384 pages, 64 records per page

Let's assume the target is at position 0

Page 0 (64 records)

Step 14
(log(16,384) = 14)

Load Page 0



Binary Search

Example:

220 records, 64 bytes each (8 byte key, 56 byte value)

64 MB of data total, 16,384 pages, 64 records per page

Let's assume the target is at position 0

Page 0 (64 records)

Step 14
(log(16,384) = 14)

Load Page 0

Step 15
Already loaded

…



Binary Search: Complexity

Steps 0 - 14: Sloooooow…each one loaded a new page (15 pages loaded)

Steps 15-19: Fast! All access the page loaded on step 14

Runtime complexity = O(log(n))

What's the memory complexity?



Binary Search: Complexity

Steps 0 - 14: Sloooooow…each one loaded a new page (15 pages loaded)

Steps 15-19: Fast! All access the page loaded on step 14

Runtime complexity = O(log(n))

What's the memory complexity?

How many pages do we need loaded at one time?



Binary Search: Complexity

Steps 0 - 14: Sloooooow…each one loaded a new page (15 pages loaded)

Steps 15-19: Fast! All access the page loaded on step 14

Runtime complexity = O(log(n))

What's the memory complexity? O(1)

How many pages do we need loaded at one time? 1 page…we only care 
about the maximum memory we will need at any one time



Binary Search: Complexity

Steps 0 - 14: Sloooooow…each one loaded a new page (15 pages loaded)

Steps 15-19: Fast! All access the page loaded on step 14

Runtime complexity = O(log(n))

What's the memory complexity? O(1)

How many pages do we need loaded at one time? 1 page…we only care 
about the maximum memory we will need at any one time

What about I/O complexity?



Binary Search: I/O Complexity

Let's set up some variables:

● n - total number of records
● R - record size (in Bytes)
● P - page size (in Bytes)
● C - ⌊R/P⌋ records per page



Binary Search: I/O Complexity

Binary Search does log(n) steps broken into two stages:

Stage 1: Each request has to load a new page into memory

Stage 2: The remaining requests all happen in the same page



Binary Search: I/O Complexity

Binary Search does log(n) steps broken into two stages:

Stage 1: Each request has to load a new page into memory

Stage 2: The remaining requests all happen in the same page

Remember: Our page size is fixed…C records per page
Therefore: The last log(C) binary search steps are all on the same page



Binary Search: I/O Complexity

Binary Search does log(n) steps broken into two stages:

Stage 1: Each request has to load a new page into memory
● log(n) - log(C) steps

Stage 2: The remaining requests all happen in the same page
● log(C) steps

Remember: Our page size is fixed…C records per page
Therefore: The last log(C) binary search steps are all on the same page



Binary Search: I/O Complexity

Binary Search does O(log(n) - log(C)) loads from memory

Therefore: I/O complexity of Binary Search is log(n)



Binary Search: Complexity

Binary Search Complexity:
● Runtime Complexity: O(log(n))
● Memory Complexity: O(1)
● I/O Complexity: O(log(n))

How can we improve on this?



Observations

Observation 1:
● Total size of records: 64MB = 220 x sizeof(key + data)
● Total size of keys only: 8MB = 220 x sizeof(key)

Observation 2:
● The first stage doesn't care what array index the record is at, just the 

page it is on
● Each page stores a contiguous range of keys…



Fence Pointers

Idea: Precompute the greatest key stored on each page
● n total records, C records per page, n/C keys required
● For our example, 220 records needs 214 pages, therefore 214 keys

○ 220 64 byte records need 64MB memory
○ 214 8 byte keys only needs 512KB memory

● Call this a "Fence Pointer Table" and store it in memory

214 = 16,384 keys (Fence Pointer Table)

16,384 pages (Actual Data)

RAM:

Disk:



Fence Pointer Example

keys 0 - 178

RAM (Fence Pointer Table):

Disk:

178 273 412 611 913 975

…keys 192 - 273 keys 274 - 412 keys 412 - 611

…

0 1 2 3 4 5

Page 0 Page 1 Page 2 Page 3

Binary Search for 321



Fence Pointer Example

keys 0 - 178

RAM (Fence Pointer Table):

Disk:

178 273 412 611 913 975

…keys 192 - 273 keys 274 - 412 keys 412 - 611

…

0 1 2 3 4 5

Page 0 Page 1 Page 2 Page 3

Binary Search for 321

273 < 312 ≤ 412



Fence Pointer Example

keys 0 - 178

RAM (Fence Pointer Table):

Disk:

178 273 412 611 913 975

…keys 192 - 273 keys 274 - 412 keys 412 - 611

…

0 1 2 3 4 5

Page 0 Page 1 Page 2 Page 3

Binary Search for 321

273 < 312 ≤ 412

Load page 2 then binary search it



Binary Search with Fence Pointers

Step 1: Binary search the fence pointer table
● O(log(n) - log(C)) steps
● All in memory, 0 disk reads

Step 2: Load page
● 1 step, 1 disk read

Step 3: Binary search within page
● O(log(C)) steps
● All in memory, 0 disk reads



Binary Search with Fence Pointers

Step 1: Binary search the fence pointer table
● O(log(n) - log(C)) steps
● All in memory, 0 disk reads

Step 2: Load page
● 1 step, 1 disk read

Step 3: Binary search within page
● O(log(C)) steps
● All in memory, 0 disk reads

Runtime: O(log(n))

I/O: O(1)

Memory?



Binary Search with Fence Pointers

Step 1: Binary search the fence pointer table
● O(log(n) - log(C)) steps
● All in memory, 0 disk reads

Step 2: Load page
● 1 step, 1 disk read

Step 3: Binary search within page
● O(log(C)) steps
● All in memory, 0 disk reads

Runtime: O(log(n))

I/O: O(1)

Memory: O(n)

We need the entire fence pointer 
table in memory at all times :(



What about Runtime/Memory Complexity?

Records per page, C, is a constant, size of the fence pointer table is n / C



What about Runtime/Memory Complexity?

Records per page, C, is a constant, size of the fence pointer table is n / C

Runtime Complexity: log(n/C) + log(C) = O(log(n))
● Search the fence pointer table, then search the page



What about Runtime/Memory Complexity?

Records per page, C, is a constant, size of the fence pointer table is n / C

Runtime Complexity: log(n/C) + log(C) = O(log(n))
● Search the fence pointer table, then search the page

I/O Complexity: 1 page read = O(1)
● Load the single page found by searching the fence pointer table



What about Runtime/Memory Complexity?

Records per page, C, is a constant, size of the fence pointer table is n / C

Runtime Complexity: log(n/C) + log(C) = O(log(n))
● Search the fence pointer table, then search the page

I/O Complexity: 1 page read = O(1)
● Load the single page found by searching the fence pointer table

Memory Complexity: O(n/C + C) = O(n)
● Need to store the fence pointer table (at all times), and one additional 

page that we load after the fence pointer table search



What about Runtime/Memory Complexity?

Records per page, C, is a constant, size of the fence pointer table is n / C

Runtime Complexity: log(n/C) + log(C) = O(log(n))
● Search the fence pointer table, then search the page

I/O Complexity: 1 page read = O(1)
● Load the single page found by searching the fence pointer table

Memory Complexity: O(n/C + C) = O(n)
● Need to store the fence pointer table (at all times), and one additional 

page that we load after the fence pointer table search

O(n) is not ideal… and what if the fence pointer table 
gets too big for memory?



Improving on Fence Pointers

At some point, we will have to store the fence pointers on Disk…

In our current example with 4KB pages, and 8B keys,
we can fit 512 keys per page



Improving on Fence Pointers

At some point, we will have to store the fence pointers on Disk…

In our current example with 4KB pages, and 8B keys,
we can fit 512 keys per page

Idea: What if we binary search the fence pointers on disk?



Improving on Fence Pointers

With our current example:
● We can store 512 8B keys per 4KB page (29 keys per page)
● 220 records / 64 records per page = 214 pages of records
● 214 fence pointer keys = 25 pages
● Binary search of the pointer key pages will require log(25) = 5 loads

In general: log(n) - log(C) - log(keys/page)



Improving on Fence Pointers

With our current example:
● We can store 512 8B keys per 4KB page (29 keys per page)
● 220 records / 64 records per page = 214 pages of records
● 214 fence pointer keys = 25 pages
● Binary search of the pointer key pages will require log(25) = 5 loads

In general: log(n) - log(C) - log(keys/page) ← Still O(log(n))



Improving on Fence Pointers

IO Complexity: log(n) - log(Cdata) - log(Ckey) = O(log(n))

● Cdata = records per page (ie: 64)
● Ckey = keys per page (ie: 512)

Can we improve our search of the on-disk Fence Pointer Table…?



Improving on Fence Pointers

Idea: A fence pointer table for our fence pointer table!

(and if that fence pointer table is too big…a fence pointer table for that 
table…and so on and so on and so on…until we have one that fits in 

memory)



Improving on Fence Pointers

Fence pointer array (in memory)

Page of actual data



Improving on Fence Pointers

1. Binary Search FP Table to find page

Fence pointer array (in memory)

Page of actual data



Improving on Fence Pointers

1. Binary Search FP Table to find page

2. Load page and binary search for record

Fence pointer array (in memory)

Page of actual data



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 to find 
Level 1 page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 to find 
Level 1 page

2. Load and search Level 1 
page to find data page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 to find 
Level 1 page

2. Load and search Level 1 
page to find data page

3. Load and search data 
page for the record



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page

3. Load and search 
Level 2 page to find 

data page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page

3. Load and search 
Level 2 page to find 

data page

4. Load and search data 
page to find the record



Improving on Fence Pointers ISAM Index

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page

3. Load and search 
Level 2 page to find 

data page

4. Load and search data 
page to find the record



ISAM Index

IO Complexity:
● 1 read at L0 (or assume already in memory)
● 1 read at L1
● 1 read at L2
● …
● 1 read at Lmax
● 1 read at data level



ISAM Index

How many levels will there be (this isn't a binary tree…)



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:

Note this isn't base 2!



ISAM Index

Like Binary Search, but "Cache-Friendly"
● Still takes O(log(n)) steps

● Still requires O(1) memory (1 page at a time)

● Now requires logCkey(n) loads from disk (logCkey(n) ≪ log2(n))



ISAM Index

What if the data changes?


