CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

B+ Trees

Announcements and Feedback

- Course evaluations are now open!
 - All feedback welcome, please fill them out
 - If 85% of the class has filled it out by the start of lecture on the last day of classes, I will release one of the final exam questions

2. Load page and binary search for record

Improving on Fence Pointers ISAM Index

IO Complexity:

- 1 read at L0 (or assume already in memory)
- 1 read at L1
- 1 read at L2
- ...
- 1 read at L_{max}
- 1 read at data level

How many levels will there be (this isn't a binary tree...)

• Level 0: 1 page w/C_{key} keys

- Level 0: 1 page w/C_{key} keys
- Level 1: Up to C_{key} pages w/ C_{key}^{2} keys

- Level 0: 1 page w/C_{key} keys
- Level 1: Up to C_{key} pages w/ C_{key}^{2} keys
- Level 2: Up to C_{key}^{2} pages w/ C_{key}^{3} keys

- Level 0: 1 page w/C_{key} keys
- Level 1: Up to C_{key} pages w/ C_{key}^{2} keys
- Level 2: Up to C_{key}^{2} pages w/ C_{key}^{3} keys
- ...
- Level max: Up to C_{key}^{max} pages w/ C_{key}^{max+1} keys

- Level 0: 1 page w/C_{key} keys
- Level 1: Up to C_{key} pages w/ C_{key}^{2} keys
- Level 2: Up to C_{key}^{2} pages w/ C_{key}^{3} keys
- ...
- Level max: Up to C_{kev}^{max} pages w/ C_{kev}^{max+1} keys
- Data Level: Up to C_{key}^{max+1} pages w/ $C_{data}^{max+1}C_{key}^{max+1}$ records

 $n = C_{data} C_{key}^{max+1}$

 $n = C_{data} C_{key}^{max+1}$

n \mathbb{C}_{key}^{max+1} C_{data}

$$\begin{split} n &= C_{data} C_{key}^{max+1} \\ \frac{n}{C_{data}} &= C_{key}^{max+1} \\ \log_{C_{key}} \left(\frac{n}{C_{data}}\right) &= max+1 \\ \log_{C_{key}} (n) - \log_{C_{key}} (C_{data}) &= max+1 \end{split}$$

$$\begin{split} n &= C_{data} C_{key}^{max+1} \\ \frac{n}{C_{data}} &= C_{key}^{max+1} \\ \log_{C_{key}} \left(\frac{n}{C_{data}} \right) &= max+1 \\ \log_{C_{key}} (n) - \log_{C_{key}} (C_{data}) &= max+1 \\ \end{split}$$
Number of Levels: $O\left(\log_{C_{key}} (n) \right)$

$$\begin{split} n &= C_{data}C_{key}^{max+1} \\ \frac{n}{C_{data}} &= C_{key}^{max+1} \\ \log_{C_{key}}\left(\frac{n}{C_{data}}\right) &= max+1 \\ \log_{C_{key}}(n) - \log_{C_{key}}(C_{data}) &= max+1 \\ \log_{C_{key}}(n) - \log_{C_{key}}(C_{data}) &= max+1 \\ \end{split}$$
Note this isn't base 2!
$$Number \text{ of Levels: } O\left(\log_{C_{key}}(n)\right)$$

Like Binary Search, but "Cache-Friendly"

- Still takes **O(log(n))** steps
- Still requires **O(1)** memory (1 page at a time)
- Now requires $\log_{Ckey}(n)$ loads from disk $(\log_{Ckey}(n) \ll \log_2(n))$

What if the data changes?

Idea: Keep "free" space on each page for new records

```
... what happens when it fills up?
```


Idea: Linked lists to store overflow

...but now our I/O complexity is **O(n)** again...

Idea: We'll have to rearrange the tree

Dynamic Page Allocation

Treat the disk as an ADT:

allocate(): PageID

• Allocates a page in the data file and returns its position

load[T](page: PageID): T

• Reads in a 4k chunk of data

write[T](page: PageID, data: T)

• Writes a 4k chunk of data to the page

Pointers to Pages

Our pages are now dynamic, need "pointers" instead of indices

Pointers to Pages

Our pages are now dynamic, need "pointers" instead of indices

Add 11? Where does it go?

Add 22, 27?

Add 22, 27?

Add 22, 27? Split the page of pointers!

Add 22, 27? Split the page of pointers!

B+ Tree (Almost)

Insert

- 1. Find the page the record belongs on
- 2. Insert record there
- 3. If full, "split" the page
 - a. Insert additional separator in the parent directory
 - b. If full, split the parent directory and repeat
 - i. If root is split, create a new root

Observation: Don't need the largest key

Observation: Don't need the largest key

Question: What if separators are mispositioned? What if we insert 13?

Question: What if separators are mispositioned? What if we insert 13? **Idea:** Steal space from neighbor (and update separator)

Question: What if we delete records?

Problem: We have O(log(n)) reads per search for the biggest n in the tree's history

Enforce that each directory and data node must have $\geq c/2$ records

• Exception: the root

What does this do to tree depth?

• $O(\log_{c/2}(n))$ (as compared to $O(\log_{c}(n))$ when the tree is static)

B+Trees

Delete

- 1. Find the page the record is on
- 2. Delete the record (if present)
- 3. If underfull, "merge" the page with a neighbor
 - a. If either neighbor has > c/2 entries then steal instead
 - b. If parent underfull, repeat
 - i. If root, then drop the lowest layer