
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

B+ Trees

mailto:epmikida@buffalo.edu


Announcements and Feedback

● Course evaluations are now open!
○ All feedback welcome, please fill them out
○ If 85% of the class has filled it out by the start of lecture on the last day of 

classes, I will release one of the final exam questions



Improving on Fence Pointers

Fence pointer array (in memory)

Page of actual data



Improving on Fence Pointers

1. Binary Search FP Table to find page

Fence pointer array (in memory)

Page of actual data



Improving on Fence Pointers

1. Binary Search FP Table to find page

2. Load page and binary search for record

Fence pointer array (in memory)

Page of actual data



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 to find 
Level 1 page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 to find 
Level 1 page

2. Load and search Level 1 
page to find data page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 to find 
Level 1 page

2. Load and search Level 1 
page to find data page

3. Load and search data 
page for the record



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page

3. Load and search 
Level 2 page to find 

data page



Improving on Fence Pointers

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page

3. Load and search 
Level 2 page to find 

data page

4. Load and search data 
page to find the record



Improving on Fence Pointers ISAM Index

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page

3. Load and search 
Level 2 page to find 

data page

4. Load and search data 
page to find the record



ISAM Index

IO Complexity:
● 1 read at L0 (or assume already in memory)
● 1 read at L1
● 1 read at L2
● …
● 1 read at Lmax
● 1 read at data level



ISAM Index

How many levels will there be (this isn't a binary tree…)



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

How many levels will there be (this isn't a binary tree…)
● Level 0: 1 page w/Ckey keys

● Level 1: Up to Ckey pages w/Ckey
2

 keys

● Level 2: Up to Ckey
2 pages w/Ckey

3
 keys

● …

● Level max: Up to Ckey
max pages w/Ckey

max+1
 keys

● Data Level: Up to Ckey
max+1 pages w/CdataCkey

max+1
 records



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:



ISAM Index

Number of Levels:

Note this isn't base 2!



ISAM Index

Like Binary Search, but "Cache-Friendly"
● Still takes O(log(n)) steps

● Still requires O(1) memory (1 page at a time)

● Now requires logCkey(n) loads from disk (logCkey(n) ≪ log2(n))



ISAM Index

What if the data changes?



Inserting New Records

keys 0 - 178Disk: …keys 192 - 273 keys 274 - 412 keys 412 - 611

Page 0 Page 1 Page 2 Page 3

Insert record with key 181



Inserting New Records

Idea: Keep "free" space on each page for new records

… what happens when it fills up?

keys 0 - 191Disk: …keys 192 - 273 keys 274 - 412 keys 412 - 611

Page 0 Page 1 Page 2 Page 3

Insert record with key 181



Inserting New Records

Idea: Linked lists to store overflow

…but now our I/O complexity is O(n) again…

keys 0 - 191Disk: …keys 192 - 273 keys 274 - 412 keys 412 - 611

Page 0 Page 1 Page 2 Page 3

more keys 0 - 191

more keys 0 - 191



Inserting New Records

Idea: We'll have to rearrange the tree

keys 0 - 191Disk: …keys 192 - 273 keys 274 - 412 keys 412 - 611

Page 0 Page 1 Page 2 Page 3

more keys 0 - 191

more keys 0 - 191



Dynamic Page Allocation

Treat the disk as an ADT:

allocate(): PageID

● Allocates a page in the data file and returns its position

load[T](page: PageID): T

● Reads in a 4k chunk of data

write[T](page: PageID, data: T)

● Writes a 4k chunk of data to the page



Pointers to Pages

Our pages are now dynamic, need "pointers" instead of indices

Keys

PageID (pointers)



Pointers to Pages

Our pages are now dynamic, need "pointers" instead of indices

6 12 16 23

1 3 4 6 8 9 10 12 13 14 15 16 17 19 22 23



Free Space Revisited

6 12 21 - -

1 3 6 8 12 19 21



Free Space Revisited

Add 9

6 12 21 - -

1 3 6 8 12 19 21



Free Space Revisited

Add 9

6 12 21 - -

1 3 6 8 9 12 19 21



Free Space Revisited

Add 14

6 12 21 - -

1 3 6 8 9 12 19 21



Free Space Revisited

Add 14

6 12 21 - -

1 3 6 8 9 12 14 19 21



Free Space Revisited

Add 10

6 12 21 - -

1 3 6 8 9 12 14 19 21



Free Space Revisited

Add 10

6 12 21 - -

1 3 6 8 9 10 12 14 19 21



Free Space Revisited

Add 11? Where does it go?

6 12 21 - -

1 3 6 8 9 10 12 14 19 21



Free Space Revisited

Add 11? Where does it go? Split the page!

6 12 21 - -

1 3 6 8 9 10 12 14 19 21



Free Space Revisited

Add 11? Where does it go? Split the page!

6 12 21 - -

1 3 6 8 9 10 12 14 19 21

8 9 10 11 12



Free Space Revisited

Add 11? Where does it go? Split the page!

6 10 12 21

1 3 6 14 19 21

8 9 10 11 12



Free Space Revisited

Add 11? Where does it go? Split the page!

6 10 12 21

1 3 6 14 19 218 9 10 11 12



Free Space Revisited

Add 22, 27?

6 10 12 21

1 3 6 14 19 218 9 10 11 12

14 19 21

22 27



27

Free Space Revisited

Add 22, 27?

6 10 12 21

1 3 6 14 19 218 9 10 11 12

14 19 21

22 27



6 10 12 12 27

Free Space Revisited

Add 22, 27? Split the page of pointers!

12 27

1 3 6 8 9 10 11 12

14 19 21

22 27



6 10 12 12 27

Free Space Revisited

Add 22, 27? Split the page of pointers!

12 27

1 3 6 8 9 10 11 12 14 19 21 22 27



B+ Tree (Almost)

Insert

1. Find the page the record belongs on
2. Insert record there
3. If full, "split" the page

a. Insert additional separator in the parent directory
b. If full, split the parent directory and repeat

i. If root is split, create a new root



B+ Trees

Observation: Don't need the largest key

6 10 12 21

1 3 6 14 19 218 9 10 11 12

Unneeded



B+ Trees

Observation: Don't need the largest key

6 10 12

1 3 6 14 19 218 9 10 11 12



B+ Trees

Question: What if separators are mispositioned? What if we insert 13?

6 10 12

1 3 6 14 19 218 9 10 11 12



B+ Trees

Question: What if separators are mispositioned? What if we insert 13?

Idea: Steal space from neighbor (and update separator)

6 10 13

1 3 6 14 19 218 9 10 11 12 13



B+ Trees

Question: What if we delete records?

6 10 12 12 27

12 27

1 3 6 8 9 10 11 12 14 19 21 22 27



B+ Trees

Delete 22,27

6 10 12 12 27

12 27

1 3 6 8 9 10 11 12 14 19 21 22 27



B+ Trees

Delete 22,27

6 10 12 12 27

12 27

1 3 6 8 9 10 11 12 14 19 21



B+ Trees

Delete 22,27

6 10 12 12

12 27

1 3 6 8 9 10 11 12 14 19 21



B+ Trees

Delete 8-12

6 10 12 12

12 27

1 3 6 8 9 10 11 12 14 19 21



B+ Trees

Delete 8-12

6 12

12 27

1 3 6 14 19 21



B+ Trees

Problem: We have O(log(n)) reads per search for the biggest n in the tree's history

6 12

12 27

1 3 6 14 19 21



B+ Trees Minimum Fill

Enforce that each directory and data node must have ≥ c/2 records
● Exception: the root

What does this do to tree depth?
● O(logc/2(n)) (as compared to O(logC(n)) when the tree is static)



B+ Trees Minimum Fill

6 10 12 12

12 27

1 3 6 8 9 10 11 12 14 19 21



B+ Trees Minimum Fill

6 10 12 12

12 27

1 3 6 8 9 10 11 12 14 19 21

This node is underfull



B+ Trees Minimum Fill

6 10 12 12

12 27

1 3 6 8 9 10 11 12 14 19 21

This node is underfull



B+ Trees Minimum Fill

6 10 12

12

1 3 6 8 9 10 11 12 14 19 21



B+ Trees Minimum Fill

6 10 12

12

1 3 6 8 9 10 11 12 14 19 21

This node is underfull



B+ Trees Minimum Fill

6 10 12

1 3 6 8 9 10 11 12 14 19 21



B+ Trees

Delete

1. Find the page the record is on
2. Delete the record (if present)
3. If underfull, "merge" the page with a neighbor

a. If either neighbor has > c/2 entries then steal instead
b. If parent underfull, repeat

i. If root, then drop the lowest layer


