Lossy Sets and Bloom Filters
Recitations are "open office hours" for the remainder of the semester
 ○ No attendance required, but TAs will still be there to answer questions and help review PA4/WA4/Final Exam material
Recall the Set ADT

Set has add, apply and remove...

What if we didn't need apply to be perfect?

What would that entail? Why would that be useful? What would we gain?
Let's say a hot new restaurant just opened up, but it's an hour away. You want to eat there, but don't want to make the drive only to find out they have no tables...what do you do?
Motivation

Let's say a hot new restaurant just opened up, but it's an hour away. You want to eat there, but don't want to make the drive only to find out they have no tables...what do you do?

● **Call the restaurant**
 ○ If they say they have no tables, don't go. You've saved yourself the trip
 ○ If they say they do...drive there. By the time you get there, they might have run out of tables, but you would have made the drive anyways
Motivation

Another Example: Reading from disk is expensive

Even when using a **B+ Tree**, if you ask for an element that doesn't exist you will need to do \(\log_c(n) \) disk reads

Idea: Keep an in-memory summary of the data
- If the summary says the key is in a particular layer, access the layer
- If not, skip the layer and end the search early

What guarantees do we need for this to work?
Motivation

- If our summary incorrectly says the key exists (false positive) ✓
 - We will read the layer only to find out it's not there
 - Extra work, but doesn't break anything...we would have done that work anyways
Motivation

- If our summary incorrectly says the key exists (false positive) ✓
 - We will read the layer only to find out it's not there
 - Extra work, but doesn't break anything...we would have done that work anyways

- If our summary incorrectly says the key doesn't exist (false negative) ✗
 - We will stop the algorithm and return an incorrect answer
Motivation

- If our summary incorrectly says the key exists (false positive) ✓
 - We will read the layer only to find out it's not there
 - Extra work, but doesn't break anything...we would have done that work anyways
- If our summary incorrectly says the key doesn't exist (false negative) ✗
 - We will stop the algorithm and return an incorrect answer

False positives are OK (not ideal though), false negatives are not
Lossy Sets

LossySet[A]

add(a: A): Insert a into the set

apply(a: A):
 ● If a is in the set **ALWAYS** return true
 ● If a is not in the set **USUALLY** return false (returning true is OK)
Lossy Set

What does this gain for us?

Idea: If apply doesn't always need to be right, we don't need to store everything
A Trivial Example

class TrivialLossySet[A] extends LossySet[A] {
 def add(a: A): Unit = { /* do nothing */ }
 def apply(a: A): Boolean = true
}

Does this work?
A Trivial Example

class TrivialLossySet[A] extends LossySet[A] {
 def add(a: A): Unit = { /* do nothing */ }
 def apply(a: A): Boolean = true
}

Does this work? Yes...but not useful
An Improvement

Idea: Take inspiration from HashTables

- Bucketize the keys in some way
- Keep **one bit** per bucket
- `add(a: A):` Set a's bucket to 1
- `apply(a: A):` Return true if the bit for a's bucket is set
Setting Bins

add("Frankenstein")
Setting Bins

add("Frankenstein")
Setting Bins

add("Frankenstein")
add("Get Out")
Setting Bins

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
Setting Bins

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
apply("Scream")?
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
apply("Saw")?
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
apply("Saw")? TRUE
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
apply("Saw")? TRUE
apply("The Candyman")?
Calling Apply

add("Frankenstein")
apply("Scream")? TRUE
add("Get Out")
apply("Saw")? TRUE
add("Scream")
apply("The Candyman")? FALSE
add("Hellraiser")
add("Us")
add("Friday the 13th")
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
apply("Saw")? TRUE
apply("The Candyman")? FALSE
apply("Dracula")? FALSE
apply("Friday the 13th")? TRUE
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
apply("Saw")? TRUE
apply("The Candyman")? FALSE
apply("Dracula")? FALSE
apply("Friday the 13th")? TRUE

So this works...how can we improve its accuracy?
Motivating Example

By show of hands, who was born in:

- ≤ 2000
- 2001
- 2002
- 2003
- 2004
- ≥ 2005

Take note of who raised their hand the same time as you
Motivating Example

By show of hands, what color is your shirt?

- White?
- Black?
- Red?
- Green?
- Blue?

Take note of who raised their hand the same time as you...how much overlap was there with the previous question?
Observation: We have fewer collisions (less overlap) with TWO features instead of one...but now we need to store info for 2 features...? or do we?

Idea: Use the same set of buckets for both features

- ie store movies by first AND last letter in the title
Setting Bins

add("Frankenstein")
Setting Bins

add("Frankenstein")
Setting Bins

add("Frankenstein")
add("Get Out")
add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
Setting Bins

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
Calling Apply

add("Frankenstein") apply("Scream")?
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
Calling Apply

```plaintext
add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")
apply("Scream")?  TRUE
apply("Saw")?
```
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
apply("Saw")? FALSE
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
apply("Saw")? TRUE
apply("Dracula")? FALSE
apply("Friday the 13th")? TRUE
Calling Apply

add("Frankenstein")
add("Get Out")
add("Scream")
add("Hellraiser")
add("Us")
add("Friday the 13th")

apply("Scream")? TRUE
apply("Saw")? TRUE
apply("Dracula")? FALSE
apply("Friday the 13th")? TRUE
Calling Apply

add("Frankenstein")
apply("Scream")? TRUE
add("Get Out")
apply("Saw")? TRUE
add("Scream")
apply("Dracula")? FALSE
add("Hellraiser")
add("Us")
apply("Friday the 13th")? TRUE
add("Friday the 13th")
Observation: Our current example is not very uniform...movie titles are much more likely to start with some letters and not others

Idea: Use hash functions!
class LossyHashSet[A](_size: Int) extends LossySet[A] {
 val bits = new Array[Boolean](_size)
 def add(a: A): Unit = {
 val bucket = a.hashCode % _size
 bits(bucket) = true
 }
 def apply(a: A): Boolean = {
 val bucket = a.hashCode % _size
 return bits(bucket)
 }
}
Lossy Hash Set

Assume we `add(a)` then `apply(b)`

What does `apply(b)` return, and when?
- **True:** When `hash(a) == hash(b) mod _size`
- **False:** When `hash(a) != hash(b) mod _size`

What is the probability of each, with \(N\) buckets?
- **True:** \(1/N\) ← only wrong \(1/N\) of the time
- **False:** \((N-1)/N\)
class LossyDoubleHashSet[A](_size: Int) extends LossySet[A] {
 val bits = new Array[Boolean](_size)
 def hash1(a: A): Int = ???
 def hash2(a: A): Int = ???
 def add(a: A): Unit = {
 bits(hash1(a) % _size) = true
 bits(hash2(a) % _size) = true
 }
 def apply(a: A): Boolean = {
 return bits(hash1(a) % _size) && bits(hash2(a) % _size)
 }
}
Lossy (Double) Hash Set

Assume we `add(a)` then `apply(b)`

What does `apply(b)` return, and when?

- **True**: When $\text{hash}_1(a) == \text{hash}_1(b)$ AND $\text{hash}_2(a) == \text{hash}_2(b) \mod \text{size}$
- **False**: Otherwise

What is the probability of each, with N buckets?

- **True**: $\sim(1/N)^2 \leftarrow$ only wrong $1/N^2$ of the time!
- **False**: $!((N-1)/N)^2$
How do we get 2 hash functions?

```scala
val SEED1 = 123104912035
val SEED2 = 406923456234

def hash1[A](a: A) =
  hash( SEED1 + a.hashCode )

def hash2[A](a: A) =
  hash( SEED2 + a.hashCode )
```

Don’t use sequentially adjacent values
How do we get 2 hash functions?

```scala
val SEED1 = 123104912035
val SEED2 = 406923456234

def hash1[A](a: A) =
    hash( SEED1 ^ a.hashCode )

def hash2[A](a: A) =
    hash( SEED2 ^ a.hashCode )
```

Use bitwise-XOR instead of +
How do we get K hash functions?

val SEED1 = 123104912035
def hash1[A](a: A) =
 hash(SEED1 ^ a.hashCode)

val SEED2 = 406923456234
def hash2[A](a: A) =
 hash(SEED2 ^ a.hashCode)

val SEED3 = 908057230543
def hash3[A](a: A) =
 hash(SEED3 ^ a.hashCode)

Generate as many hash functions as needed
How do we get K hash functions?

```scala
val SEEDS = Seq(123104912035, 406923456234, ...)
def ithHash[A](a: A, i: Int) =
  hash( SEEDS(i) ^ a.hashCode )
```
Bloom Filters

- Overall Structure
 - \texttt{size} bits
 - \texttt{k} hash functions
Bloom Filters

class BloomFilter[A](_size: Int, _k: Int) extends LossySet[A] {
 val bits = new Array[Boolean](_size)

 def add(a: A): Unit = {
 for(i <- 0 until _k) { bits(ithHash(a, i) % _size) = true }
 }

 def apply(a: A): Boolean = ???
}
Bloom Filters

class BloomFilter[A](_size: Int, _k: Int) extends LossySet[A] {
 val bits = new Array[Boolean](_size)

 def add(a: A): Unit = {
 for(i <- 0 until _k) { bits(ithHash(a, i) % _size) = true }
 }

 def apply(a: A): Boolean = {
 for(i <- 0 until _k) {
 if(!bits(ithHash(a, i) % _size)) { return false; }
 }
 return true
 }
}
Bloom Filters

```scala
class BloomFilter[A](size: Int, k: Int) extends LossySet[A] {
    val bits = new Array[Boolean](size)

    def add(a: A): Unit = {
        for (i <- 0 until k) { bits(ithHash(a, i) % size) = true }
    }

    def apply(a: A): Boolean = {
        return (0 until k).foreach { i => bits(ithHash(a, i) % size) }
    }
}
```
Bloom Filter Parameters

_size
- Intuitively: More space, fewer collisions

_k
- Intuitively: more hash functions means...
 more chances for one of b’s bits to be unset.
 more bits set = higher chance of collisions.
Bloom Filters: Analysis

\[\frac{1}{N} \]

The probability that 1 bit is set by 1 hash function
Bloom Filters: Analysis

\[1 - \frac{1}{N} \]

The probability that 1 bit is **not** set by 1 hash function
Bloom Filters: Analysis

\[
\left(1 - \frac{1}{N}\right)^k
\]

The probability that 1 bit is not set by k hash functions
Bloom Filters: Analysis

\[
\left(1 - \frac{1}{N}\right)^{kn}
\]

The probability that 1 bit is **not** set by k hash functions

... over n distinct calls to **add**
Bloom Filters: Analysis

\[1 - \left(1 - \frac{1}{N} \right)^{kn} \]

The probability that 1 bit is set by \textbf{at least one} of \(k \) hash functions ...
over \(n \) distinct calls to \textbf{add}
Bloom Filters: Analysis

The probability that all k randomly selected bits of element b...
... are set by at least one of k hash functions...
... over n distinct calls to add

\[\approx \left(1 - \left(1 - \frac{1}{N} \right)^{kn} \right)^k \]
Bloom Filters: Analysis

The chance of collision in a Bloom filter with parameters k, N after n distinct elements have been added

$$\approx \left(1 - e^{-\frac{kn}{N}}\right)^k$$

The probability that all k randomly selected bits of element b ...

... are set by at least one of k hash functions

... over n distinct calls to add
Bloom Filters: Analysis

\[\approx \left(1 - e^{-\frac{kn}{N}}\right)^k \]

As \(e^{kn/N} \) grows, the chance of collision shrinks
Bloom Filters: Analysis

Ideal: Pick N, k that minimize collision chance:

- **N**
 - Smaller N, more opportunities for collisions
 - Bigger N, more space used

- **k**
 - Smaller k, fewer tests, more chance of collisions
 - Bigger k, more bits set, more chance of collisions
 - Sweet spot in the middle

$$\left(1 - e^{-\frac{kn}{N}}\right)^k$$
Bloom Filters: Analysis

Optimum at: \[k = c \cdot \frac{N}{n} \]
Bloom Filters: Analysis

\[k = c \cdot \frac{N}{n} \]

\[n = c \frac{N}{k} \]

N and n are linearly related
O(n) buckets required
Bloom Filters: Analysis

- $N/n = 5 \rightarrow \sim 10\%$ collision chance
- $N/n = 10 \rightarrow \sim 1\%$ collision chance

- 10 bits vs
 - 32 bits for one Int (3 to 1 savings)
 - 64 bits for a Double/Long (6 to 1 savings)
 - \sim 8000 bits for a full record (800 to 1 savings)
Bloom Filters: Analysis

- vs B+Tree or Binary Search Tree implementing Set
 - $O(k \cdot \text{cost}_{\text{hash}}) \approx O(1) \text{ vs } O(\log(n) \cdot \text{cost}_{\text{compare}})$ runtime
 - No directory pages (constant factor extra memory required)

- vs Hash Table implementing Set
 - Guaranteed $O(k \cdot \text{cost}_{\text{hash}}) \approx O(1) \text{ vs } \text{Expected } O(\text{cost}_{\text{hash}})$
 - No ‘fill factor’ (constant factor extra memory required)

- vs Array implementing Set
 - $O(k \cdot \text{cost}_{\text{hash}}) \approx O(1) \text{ vs } O(n \cdot \text{cost}_{\text{compare}})$