## CSE 250

## Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

## Spatial Data Structures

## Some Problems are REALLY Big



ESA/Hubble and NASA: http://www.spacetelescope.org/images/potw1006a/

## Some Problems are REALLY Small


https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

## Some Problems are REALLY Detailed

This is NOT a photo. It is a computer generated image.


[^0]
## What do these things have in common?

## What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc) which are organized spatially

## What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc) which are organized spatially

What "bodies" (other planets, molecules, etc) are close to each other?
Which object(s) will a ray of light bounce/projectile hit?
What objects are closest to a given point?
Which objects fall within a given range?

## What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc) which are organized spatially

What "bodies" (other planets, molecules, etc) are close to each other?
Which object(s) will a ray of light bounce/projectile hit?
What objects are closest to a given point?
Which objects fall within a given range?
How can we organize these elements in a way that allows us to efficiently answer these questions?

## Related Problems

## Mapping

- What's within $1 / 2$ mile of me?
- What's within 2 minutes of my route?


## Games

- What objects are close enough that they might need to be rendered?


## Science

- "Big Brain Project": Neuron A fired, so what other neurons are close enough to be stimulated?
- "Astronomy"/"MD": What forces are affecting a particular body, and what forces can we ignore/estimate?


## Organizing/Storing Our Data

What data structure have we seen already that lets us efficiently organize/store "sorted" data?

## Organizing/Storing Our Data

What data structure have we seen already that lets us efficiently organize/store "sorted" data?

Idea: What if we organize our data in a BST

## Binary Search Trees (for one dimension)

```
class Node[T <: Comparable](value: T)
{
    /** Guarantee:
    Left.value < this.value **/
    val left: Node[T] = Empty
    /** Guarantee:
        right.value >= this.value **/
    val right: Node[T] = Empty
}
```


## Binary Search Trees (for one dimension)

## Insert

- Find the right spot: $\mathbf{O}$ (depth)
- Create and insert the node: $\mathbf{O}(1)$


## Find

- Find the right node: $\mathbf{O}$ (depth)
- Return the value if it is present: $\mathbf{O ( 1 )}$


If the tree is balanced, $O($ depth $)=0(\log (n))$

## Multiple Dimensions

This worked for 1-dimensional data...How could we change it to work with 2-dimensional data, ie (Birthday, Zip Code)?

## Multiple Dimensions

Goal: Create a data structure that can answer:

1. Find me everyone with a specific birthday
2. Find me everyone in a specific zip code
3. Find me everyone that has a specific birthday AND zip code

## Multiple Dimensions

Goal: Create a data structure that can answer:

1. Find me everyone with a specific birthday
2. Find me everyone in a specific zip code
3. Find me everyone that has a specific birthday AND zip code

Idea 1: BST over birthday

- Operation 2 is $0(n)$
- Operation 3 is $\mathbf{O}(\log (n)+\mid p e o p l e ~ s h a r i n g ~ a ~$ bdayl)


## Multiple Dimensions

Goal: Create a data structure that can answer:

1. Find me everyone with a specific birthday
2. Find me everyone in a specific zip code
3. Find me everyone that has a specific birthday AND zip code

Idea 1: BST over birthday

- Operation 2 is $O(n)$
- Operation 3 is $\mathbf{O}(\log (n)+\mid p e o p l e ~ s h a r i n g ~ a ~$ bdayl)

Idea 2: BST over zip code

- Operation 1 is $\mathbf{O ( n )}$
- Operation 3 is $O(\log (n)+\mid p e o p l e ~ s h a r i n g ~ a ~$ zipl)


## Multiple Dimensions

Goal: Create a data structure that can answer:

1. Find me everyone with a specific birthday
2. Find me everyone in a specific zip code
3. Find me everyone that has a specific birthday AND zip code

Idea 1: BST over birthday

- Operation 2 is $O(n)$
- Operation 3 is $\mathbf{O}(\log (n)+\mid p e o p l e ~ s h a r i n g ~ a ~$ bdayl)

Idea 2: BST over zip code

- Operation 1 is $\mathbf{O ( n )}$
- Operation 3 is $\mathbf{O}(\log (n)+\mid$ people sharing a zipl)

Idea 3: BST over birthday, then zip (lexical order)

- Operation 2 is still $O(n)$


## Why did it fail?

Ideas 1 \& 2
BST works by grouping "nearby" values together in the same subtree....
... but "near" in one dimension says nothing about the other!

## Idea 3

BST works by partitioning the data...
... but lexical order partitions fully on one dimension before partitioning on the other.

## Attempt 1 - Partition on BOTH dimensions



## Attempt 1 - Partition on BOTH dimensions

Possible Values:


## Each Node has 4 Children



## Each Node has 4 Children

"Binary" Search Tree

- Bin - Prefix meaning " 2 "
- Each node has (at most) 2 children
"Quadary" Search Tree
- Quad - Prefix meaning 4
- Each node has (at most) 4 children
- Usually say: "Quad-Tree" instead


## Quad Trees - Find Node

```
def findNode(x: Int, y: Int): Node[T] = {
    var current = root
    while(current.isDefined && (current.x != x || current.y != y) ){
        if(current.x < x){
            if(current.y < y){ current = current.llChild }
            else { current = current.lhChild }
        } else {
            if(current.y < y){ current = current.hlChild }
            else { current = current.hhChild }
        }
    }
    return current
}
```


## Quad Trees - Find Node

```
def findNode(x: Int, y: Int): Node[T] = {
    var current = root
    while(current.isDefined && (current.x != x || current.y != y) ){
        if(current.x < x){
            if(current.y < y){ current = current.llChild }
            else { current = current.lhChild }
        } else {
            if(current.y < y){ current = current.hlChild }
            else { current = current.hhChild }
        }
    }
    return current
}
What's the complexity?
```


## Quad Trees - Find Node

```
def findNode(x: Int, y: Int): Node[T] = {
    var current = root
    while(current.isDefined && (current.x != x || current.y != y) ){
        if(current.x < x){
            if(current.y < y){ current = current.llChild }
            else { current = current.lhChild }
        } else {
            if(current.y < y){ current = current.hlChild }
            else { current = current.hhChild }
        }
    }
    return current
}

\section*{Quad Trees - Other Operations}
insert(x, \(y\), value)
- Find placeholder spot corresponding to ( \(\mathrm{x}, \mathrm{y}\) ): O(d)
- Create and inject new node: \(\mathbf{O}(1)\)
apply(x, y)
- Find position corresponding to ( \(\mathrm{x}, \mathrm{y}\) ): \(\mathbf{O ( d )}\)
- Return the node if it exists: \(\mathbf{O}(1)\)
range(xlow, xhigh, ylow, yhigh)
- ...?

\section*{Quad Trees - Range}


\section*{Quad Trees - Range}


\section*{Quad Trees - Range}


\section*{Quad Trees - Find Node (With Range)}
```

def findNode(x: Int, y: Int): Node[T] = {
var current = root
var range = Rectangle(-\infty, -\infty, \infty, \infty)
while(current.isDefined \&\& (current.x != x || current.y != y) ){
if(current.x < x) {
if(current.y < y){ current = current.llChild;
current.range = range.crop(Rectangle(-\infty, -\infty, x, y)) }
else { current = current.lhChild;
current.range = range.crop(Rectangle(-\infty, y, x, \infty)) }
} else {
if(current.y < y){ current = current.hlChild;
current.range = range.crop(Rectangle(x, -\infty, \infty, y)) }
else
{ current = current.hhChild;
current.range = range.crop(Rectangle(x, y, \infty, \infty)) }
}
}
return current
}

```

\section*{Quad Trees - Range}
```

def range( target: Rectangle ): Seq[Node[T]] = {
val ret = Buffer[Node[T]]()
def visit(current: Node[T]) = {
if( target.intersect(current.range).isEmpty ) { return }
if( target.contains(current.x, current.y) ){ ret.append(current) }
if( ll.isDefined ) { visit(llChild) }
if( lh.isDefined ) { visit(lhChild) }
if( hl.isDefined ) { visit(hlChild) }
if( hh.isDefined ) { visit(hhChild) }
}
visit(root)
}

```

\section*{Quad Trees - Challenges}

Creating a balanced Quad Tree is hard
- Impossible to always split collection elements evenly across all four subtrees
(though depth \(=0(\log (n))\) still possible)
Keeping the quad tree balanced after updates is significantly harder
- No "simple" analog for rotate left/right.

\section*{Worst Case:}

No possible way to create \(n\)


\section*{Quad Trees - Challenges}

Problem: Every node has 4 children!

\section*{Revisiting Lexical Order}

Problem: Searches on lexical order partition all of one dimension first

\section*{Revisiting Lexical Order}

Idea: Alternate dimensions

\section*{k-D Tree Example}


Nodes at level 1 will partition on the first dimension, \(x\)

\section*{k-D Tree Example - insert(5,4)}

\(5<10\), so insert into the left subtree
\((5,4)\) is at level 2 so it will partition it's children on the second dimension, \(y\)

\section*{k-D Tree Example - insert(1,6)}


\section*{k-D Tree Example - insert(19,10)}


\section*{k-D Tree Example - insert(9,1)}


\section*{k-D Tree Example - insert(16,15)}


\section*{k-D Tree Example - insert(13,6)}


\section*{k-D Trees - Bigger Example}


\section*{k-D Trees - Find Node}
```

def findNode(x: Int, y: Int): Node[T] = {
var current = root
var depth = 0
while(current.isDefined \&\& (current.x != x || current.y != y) ){
if(depth % 2 == 1) { if(current.x < x) { current = current.left }
else { current = current.right }
else
{ if(current.y < y) { current = current.left }
else
{ current = current.right }
depth += 1
}
return current
}

```

\section*{k-D Trees - Find Node}
```

def findNode(x: Int, y: Int): Node[T] = {
var current = root
var depth = 0
while(current.isDefined \&\& (current.x != x || current.y != y) ){
if(depth % 2 == 1) { if(current.x < x) { current = current.left }
else { current = current.right }
else
{ if(current.y < y) { current = current.left }
else
{ current = current.right }
depth += 1

```
    \}
    return current
\}

What's the complexity?

\section*{k-D Trees - Find Node}
```

def findNode(x: Int, y: Int): Node[T] = {
var current = root
var depth = 0
while(current.isDefined \&\& (current.x != x || current.y != y) ){
if(depth % 2 == 1) { if(current.x < x) { current = current.left }
else { current = current.right }
else
{ if(current.y < y) { current = current.left }
else
{ current = current.right }
depth += 1
}
return current
}

## k-D Trees - Other Operations

insert(x, y, value)

- Find placeholder spot corresponding to ( $\mathrm{x}, \mathrm{y}$ ): $\mathbf{O}(\mathrm{d})$
- Create and inject new node: O(1)
apply(x, y)
- Find position corresponding to ( $\mathrm{x}, \mathrm{y}$ ): $\mathbf{O}(\mathrm{d})$
- Return node if it exists: $\mathbf{O}(1)$


## Nearest Neighbor

What if we want to find the closest point to our target?

## Nearest Neighbor

What if we want to find the closest point to our target?
Problem: Can't just do normal find; the target may not be in the tree at all

## Nearest Neighbor

What if we want to find the closest point to our target?
Problem: Can't just do normal find; the target may not be in the tree at all
Idea: Search like normal until we hit a leaf, then go back up the tree and see if there's a possibility we missed something.

## Nearest Neighbor - Example 1



Found a leaf! This is our "closest so far" It is 2.828 units away from our target

## Nearest Neighbor - Example 1



Found a leaf! This is our "closest so far" It is 2.828 units away from our target

## Nearest Neighbor - Example 1



Is it possible for something in the other child of 5,4 to be 10,4 closer?


Found a leaf! This is our "closest so far" It is 2.828 units away from our target

## Nearest Neighbor - Example 1



Is it possible for something in
the other child of 5,4 to be 10,4 closer?

No! Look at the area defined our target and our


Found a leaf! This is our "closest so far" It is 2.828 units away from our target

## Nearest Neighbor - Example 1



Is it possible for something in
the other child of 5,4 to be 10,4 closer?

No! Look at the area defined our target and our


Found a leaf! This is our "closest so far" It is 2.828 units away from our target

## Nearest Neighbor - Example 1



Moving up to 10,4 is it possible that a closer point is in it's other child?


Found a leaf! This is our "closest so far" It is 2.828 units away from our target

## Nearest Neighbor - Example 1



Moving up to 10,4 is it possible that a closer point is in it's other child?


Found a leaf! This is our "closest so far" It is 2.828 units away from our target

## Nearest Neighbor - Example 1



We've reached the root, so the closest point is $(1,6)$ !


Found a leaf! This is our "closest so far" It is 2.828 units away from our target

## Nearest Neighbor - Example 2



## Nearest Neighbor - Example 2



As before we travel down to a leaf and treat that as our current best


## Nearest Neighbor - Example 2



As before we travel down to a leaf and treat that as our current best


## Nearest Neighbor - Example 2



As we travel back up the tree, do we need to check the other child of 19,10 ?


## Nearest Neighbor - Example 2



As we travel back up the tree, do we need to check the other child of 19,10 ?


## Nearest Neighbor - Example 2



When we check the other child tree, we do find a closer point so we can update our radius.


10,4

## Nearest Neighbor - Example 2



Now we are back at the root...do we need to check the left subtree?


## Nearest Neighbor - Example 2



Yes:(
Our search radius intersects with the splitting line, so it's possible there are points in the other subtree closer to us...

Now we are back at the root...do we need to check the left subtree?


## Generalization: k-Nearest Neighbors

Finding one point can be as fast as $O(\log (n))$, but as slow as $O(n)$...
What if we want to find the $k$-Nearest Neighbors instead?
Idea: Keep a list of the k-nearest points, and the furthest point defines our "search radius"

## k-D Trees

- Can generalize to $\mathrm{k}>2$ dimensions
- Depth 0: Partition on Dimension 0
- Depth 1: Partition on Dimension 1
- ...

The name $k$ - $D$ tree comes from
this generalization (k-Dimensional Tree)

- Depth k-1: Partition on Dimension k-1
- Depth k: Partition on Dimension 0
- Depth k+1: Partition on Dimension 1
- Depth i: Partition on Dimension (i mod k)
- In practice, range( ) and knn() become $\sim \mathbf{O}(\mathrm{n})$ for $\mathrm{k}>3$
- If a subtree's range overlaps with the target in even one dimension, we need to search it. (Curse of Dimensionality)


## Other Problems: N-Body Problem

What if we want to compute interactions between one body and every other body?

Naively, this would be $\mathbf{O}\left(\boldsymbol{n}^{2}\right)$...but likely we don't care as much about interactions with bodies that are very very far away.

## Other Problems: N-Body Problem

Idea: Divide our points into a quadtree (or octree in 3 dimensions)

Do full calculation for points closeby (in the same box)

Compute a summary (ie total force and center of mass) for each box that can be applied to far away boxes


Runtime is now $O(\boldsymbol{n} \log (n))$

## Other Problems: Ray/Path Tracing

Which object does this ray of light hit? Do we have to check every single object?

## Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes (BVH - Bounding volume hierarchy)


## Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes (BVH - Bounding volume hierarchy)


## Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes (BVH - Bounding volume hierarchy)


## Other Problems: Ray/Path Tracing

These bounding boxes form a tree We can check if the ray intersects a bounding box. If it does, explore that child. If not, ignore it.


## Other Problems: Ray/Path Tracing

These bounding boxes form a tree We can check if the ray intersects a bounding box. If it does, explore that child. If not, ignore it.


## Other Problems: Ray/Path Tracing

These bounding boxes form a tree We can check if the ray intersects a bounding box. If it does, explore that child. If not, ignore it.


## Other Problems: Ray/Path Tracing

These bounding boxes form a tree We can check if the ray intersects a bounding box. If it does, explore that child. If not, ignore it.


## Other Problems: Ray/Path Tracing

If we build our BVH effectively, the runtime becomes logarithmic.



[^0]:    https://en.wikipedia.org/wiki/Ray_tracing_\%28graphics\%29\#/media/File:Glasses_800_edit.png

