CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

More Spatial Data Structures

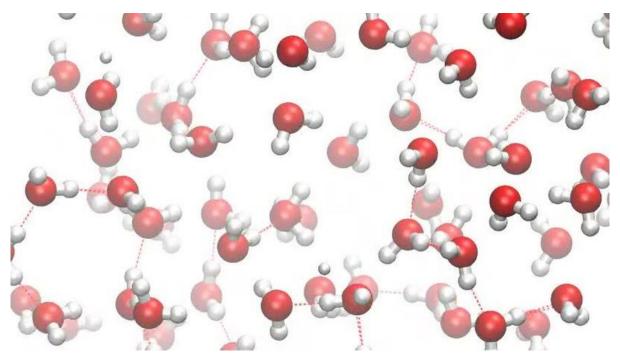
Announcements

PA4 due Sunday

Some Problems are REALLY Big

ESA/Hubble and NASA: http://www.spacetelescope.org/images/potw1006a/

Some Problems are REALLY Small



Molecular Dynamics Simulation of Liquid Water

Some Problems are REALLY Detailed

This is **NOT** a photo. It is a computer generated image.

Other Problems: N-Body Problem

What if we want to compute interactions between one body and every other body? How long would we expect that to take?

Other Problems: N-Body Problem

What if we want to compute interactions between one body and every other body? How long would we expect that to take?

Naively, this would take $O(n^2)$...but likely we don't care as much about interactions with bodies that are very very far away.

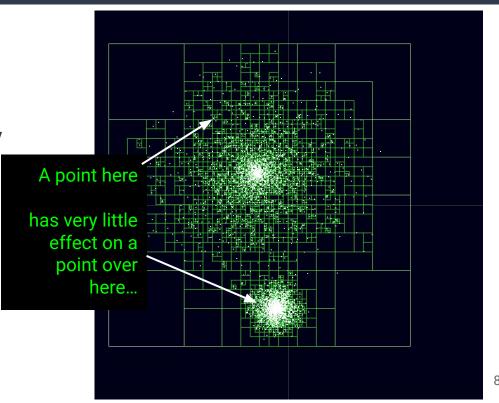
Other Problems: N-Body Problem

Idea: Divide our points into a quadtree (or octree in 3 dimensions)

Do full calculation for points closeby (in the same box)

Compute a summary (ie total force and center of mass) for each box that can be applied to far away boxes

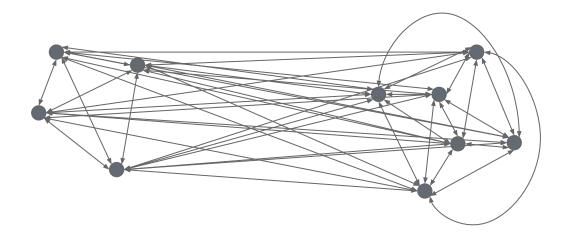
Target runtime: $\sim O(n\log(n))$



Example

This diagram contains 10 bodies interacting with one another...

$$O(n^2) = \sim 100$$
 interactions (arrows)

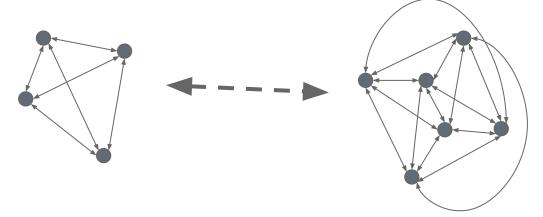


Example

This diagram contains 10 bodies interacting with one another...

 $O(n^2) = \sim 100$ interactions (arrows)

Idea: Estimate the interactions between far away points



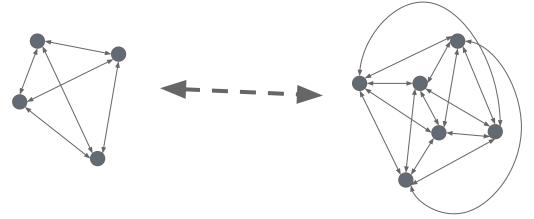
Example

This diagram contains 10 bodies interacting with one another...

 $O(n^2) = \sim 100$ interactions (arrows)

How can we do this systematically?

Idea: Estimate the interactions between far away points



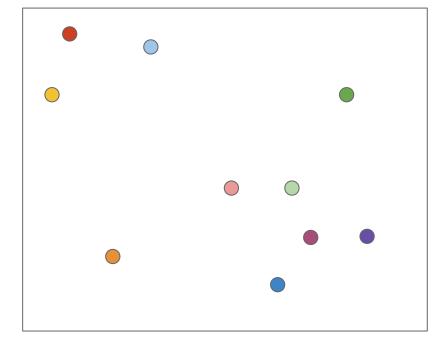
Quad/Oct Trees Revisited

Idea: Let's organize the data (spatially) in a tree structure

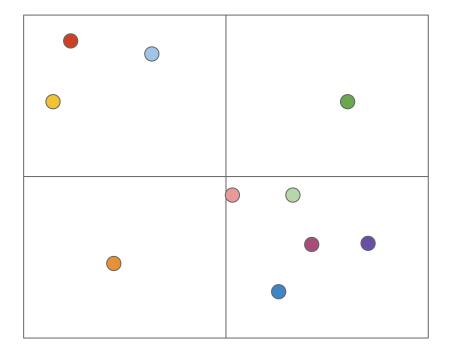
- 2D space → use a quad tree
- 3D space → use an oct tree (each node has at most 8 children)

Unlike last time, let's partition the space we are simulating, rather than the points in the space

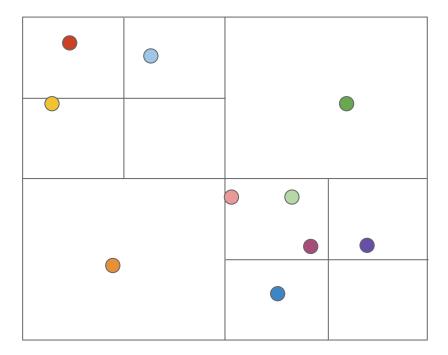
- Divide the space evenly until there is only one element per partition
- Internal tree nodes represent the partitions, leaves are the actual elements



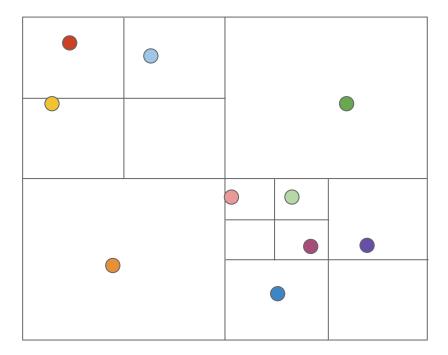
- Divide the space evenly until there is only one element per partition
- Internal tree nodes represent the partitions, leaves are the actual elements

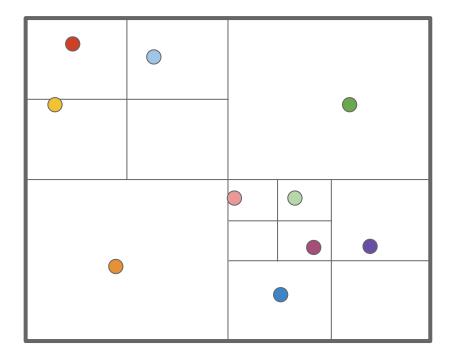


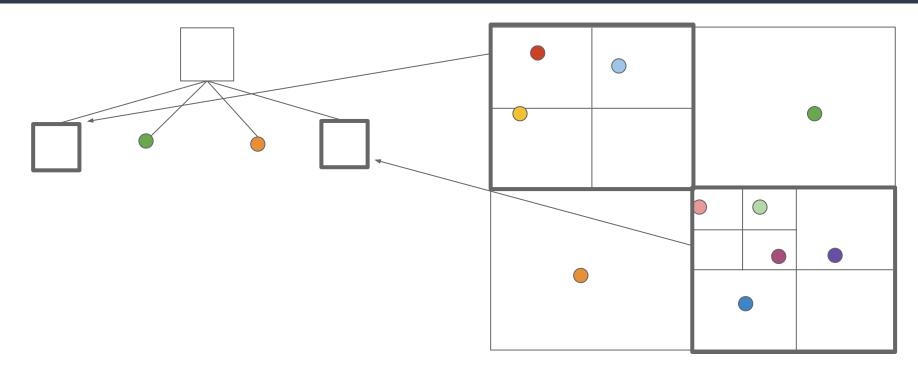
- Divide the space evenly until there is only one element per partition
- Internal tree nodes represent the partitions, leaves are the actual elements

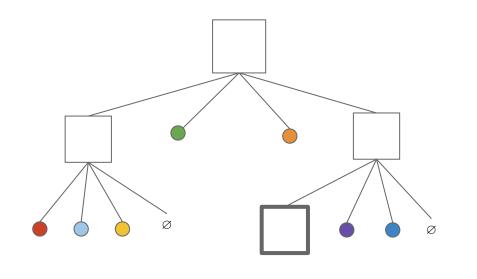


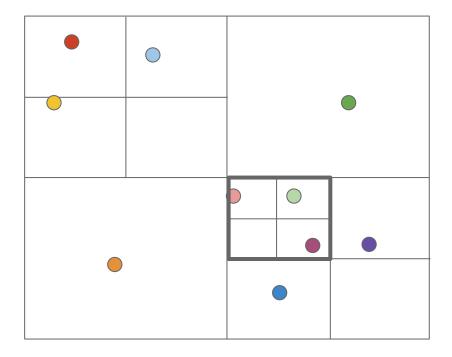
- Divide the space evenly until there is only one element per partition
- Internal tree nodes represent the partitions, leaves are the actual elements

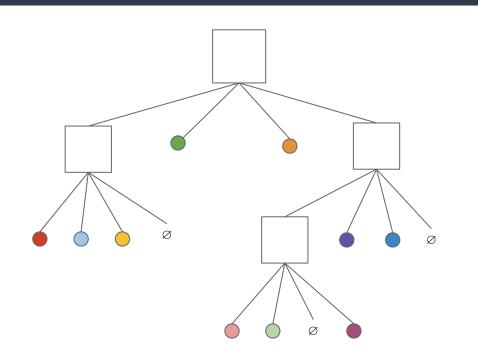


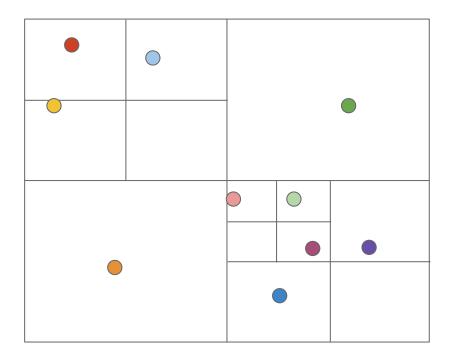


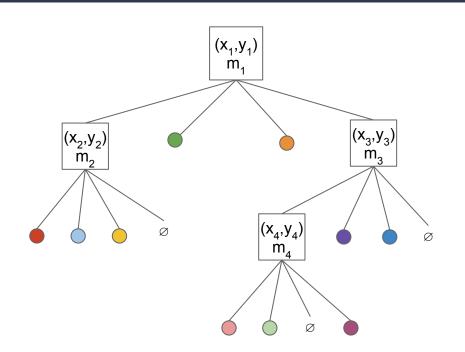


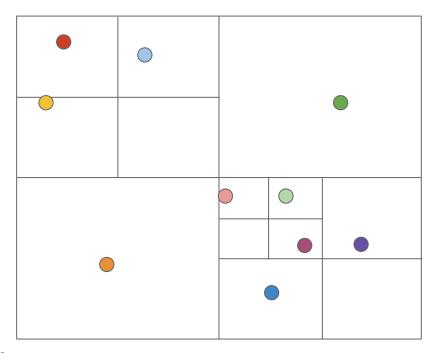












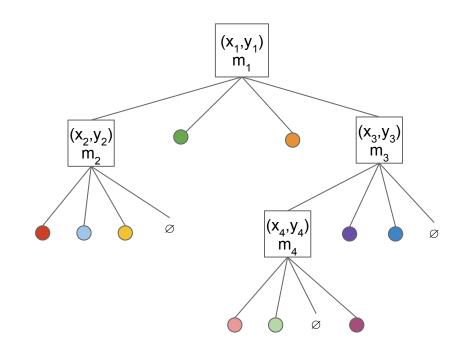
For each internal node, we can compute the center of mass and total mass

Barnes-Hut Algorithm (simplified)

Now to use the tree:

For a body with coordinates (x_b, y_b) :

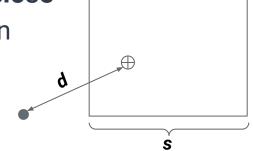
- 1. Start at the root
- 2. If the (x_1, y_1) is "far" from (x_b, y_b) then just treat it as a single body with mass m_1
- 3. If it is "close", then repeat this process with the children



Barnes-Hut Algorithm (simplified)

So what is considered "far", and what is considered "close"

 Find the ratio s/d where s is the width of the region in question and d is the distance from the body to the center of mass of that region

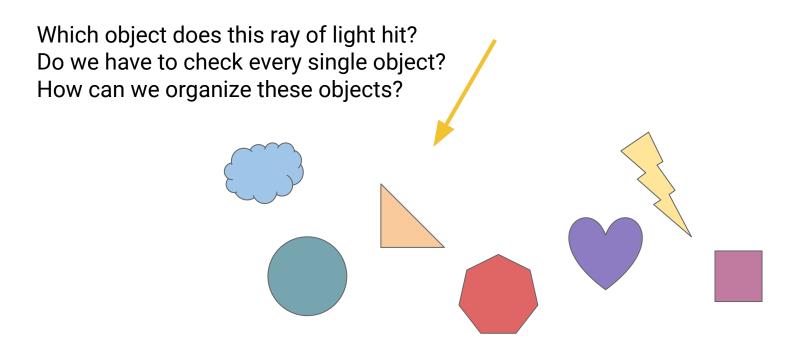


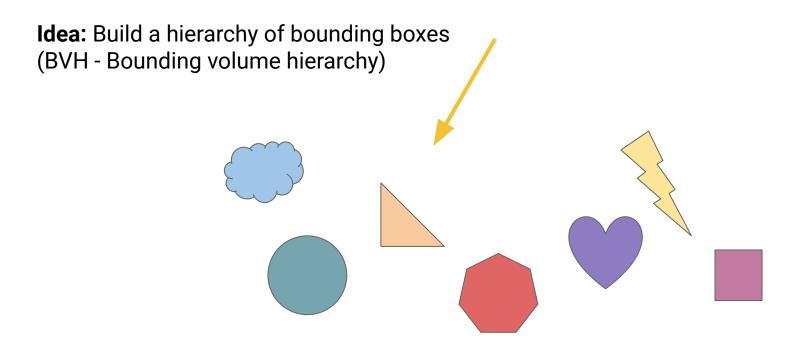
- Pick a threshold, θ
 - \circ If **s**/**d** > θ then we are close enough to check children in more detail
 - \circ If $s/d < \theta$ then we are far away and can treat the region as a single body
- Larger θ means more fudging the numbers, but faster execution ($\sim O(n \log n)$ to process all n bodies)
- $\theta = 0$ means finding an exact answer, but at a cost of $O(n^2)$

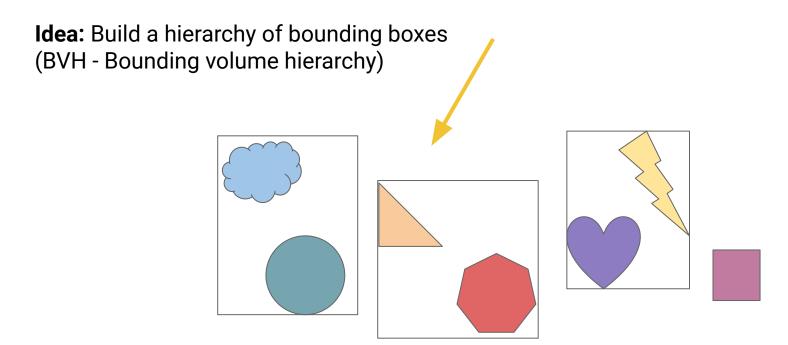
Trees as a Hierarchy

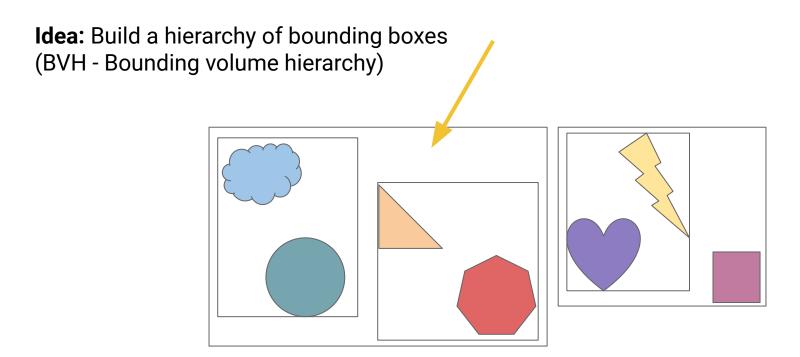
In the n-body problem, we used a tree to hierarchically organize our data

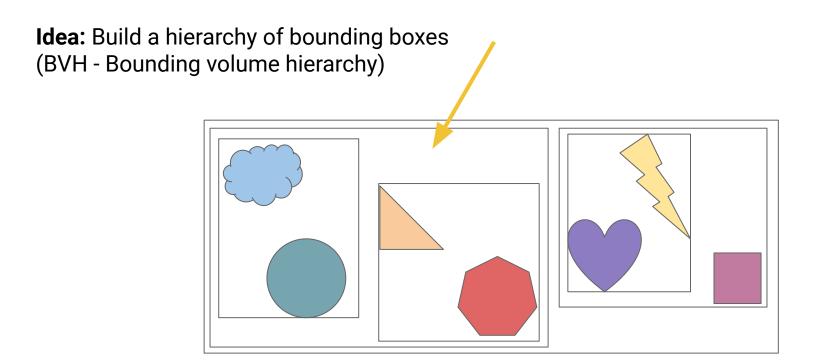
- When using this hierarchy, for each internal node we could decide whether or not to explore further with a very cheap O(1) check
 - This allows us to avoid checking all *n* elements in a systematic fashion
- This style of algorithm has other applications as well

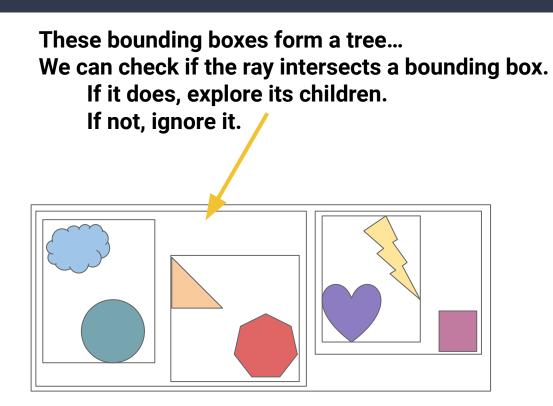


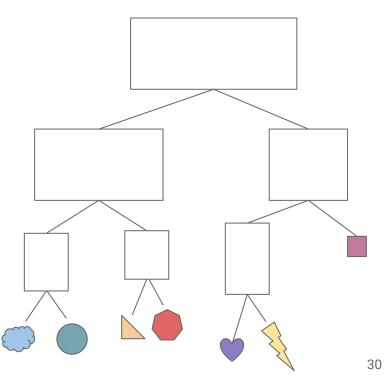


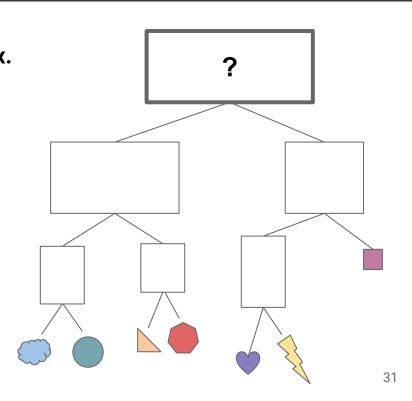


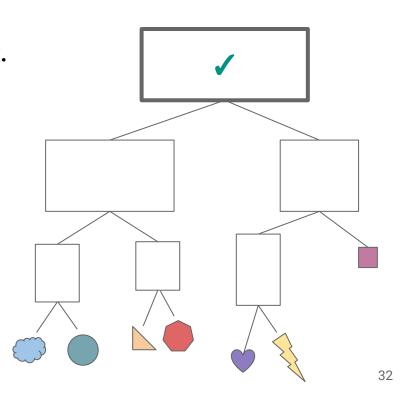


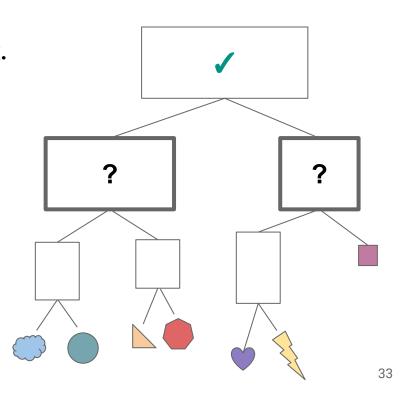


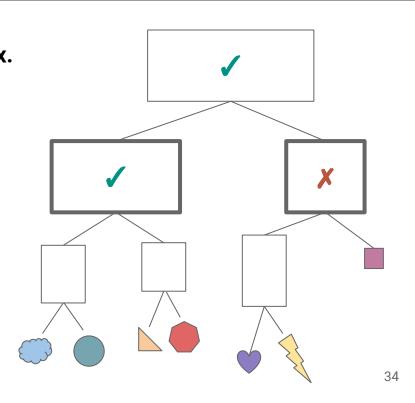


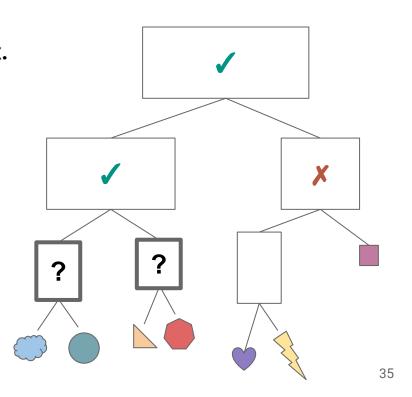


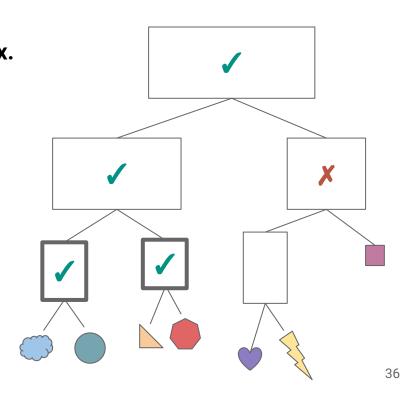


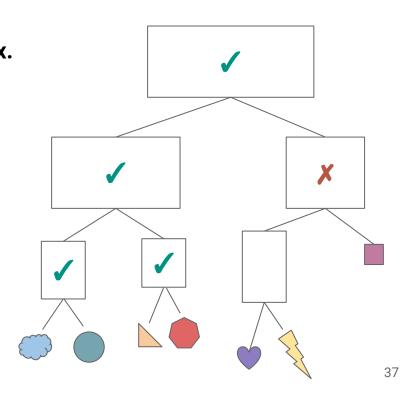












- By using a bounding-volume hierarchy, we can avoid checking all n
 objects for collisions
 - When we are projecting millions+ rays of light, this is a huge savings
- In practice, we hope to end up with a runtime of ~O(m log n) where m
 is the number of rays and n is the number of objects
 - This depends on how effectively we can build our BVH
- In both ray tracing and Barnes-Hut, the exact structure of the hierarchy will vary based on the specific data we are using

High-Level Summary

- We've seen both trees and hash tables as effective ways to organize our data if we know we are going to be searching it often
- HashTables can be great for exact lookups
 - Think PA4: you may want to lookup a person with an exact (birthday, zipcode) pair, and HashTable lets you do that very fast
- Trees and tree like structures work very well for "fuzzier" searches
 - What is "close" to this point? What object might this projectile hit? etc.
 - The input to your search is not necessarily an exact element in your tree,
 but the tree organizes the data in a way that directs your search