CSE-250 Recitation

Sept 13-Sept 19: Inequalities, Logarithms, and Bounds

Questions?

- Scala?
- PA1?
- Asymptotic Notation?
- Runtime Analysis?

Logarithms Cheat Sheet

- Let $a, b, c, n>0$
- Exponent Rule: $\log \left(n^{a}\right)=a \log (n)$
- Product Rule: $\log (a n)=\log (a)+\log (n)$
- Division Rule: $\log \left(\frac{n}{a}\right)=\log (n)-\log (a)$
- Change of Base from \boldsymbol{b} to $\boldsymbol{c}: \log _{b}(n)=\frac{\log _{c}(n)}{\log _{c}(b)}$
- Log/Exponent are Inverses: $b^{\log _{b}(n)}=\log _{b}\left(b^{n}\right)=n$

Summation Cheat Sheet

1. $\sum_{i=j}^{k} c=(k-j+1) c$
2. $\sum_{i=j}^{k}(c f(i))=c \sum_{i=j}^{k} f(i)$
3. $\sum_{i=j}^{k}(f(i)+g(i))=\left(\sum_{i=j}^{k} f(i)\right)+\left(\sum_{i=j}^{k} g(i)\right) \mid$
4. $\sum_{i=j}^{k}(f(i))=\left(\sum_{i=\ell}^{k}(f(i))\right)-\left(\sum_{i=\ell}^{j-1}(f(i))\right)$ (for any $\ell<j$)
5. $\sum_{i=j}^{k} f(i)=f(j)+f(j+1)+\ldots+f(k-1)+f(k)$
6. $\sum_{i=j}^{k} f(i)=f(j)+\ldots+f(\ell-1)+\left(\sum_{i=\ell}^{k} f(i)\right)$ (for any $j<\ell \leq k$)
7. $\sum_{i=j}^{k} f(i)=\left(\sum_{i=j}^{\ell} f(i)\right)+f(\ell+1)+\ldots+f(k)$ (for any $j \leq \ell<k$)
8. $\sum_{i=1}^{k} i=\frac{k(k+1)}{2}$
9. $\sum_{i=0}^{k} 2^{i}=2^{k+1}-1$

Inequalities Cheat Sheet

$x \geq y$ is true if $x / a \geq x / y$ (for any $a>0$)
$x \geq y$ is true if $x a \geq x y$ (for any $a>0$)
$x+a \geq y+b$ is true if $x \geq y$ and $a \geq b$ (for any a, b)
$x \geq y$ is true if $x \geq a$ and $a \geq y$ (for any a)

Examples

Show that there is some c for which...
$12 \log \left(10 \times 2^{n}\right) \leq c n$
for all \mathbf{n} greater than some \mathbf{n}_{0}

Examples

Show that there is some c for which...
$\mathrm{n}^{2}+\mathrm{n} \log (\mathrm{n}) \leq \mathrm{c} 2^{\mathrm{n}}$
for all \mathbf{n} greater than some \mathbf{n}_{0}

Examples

Let $f(x)$ be a function defined as follows:

- If x is odd, $f(x)=10 x$
- If x is even, $f(x)=100 x^{2}$

Show that there is some $\mathbf{c}_{\text {low }}$ and $\mathbf{c}_{\text {high }}$ for which...
$f(n) \geq c_{\text {low }} n \quad$ and $\quad f(n) \leq c_{\text {high }} n^{2}$
... for all \mathbf{n} greater than some $\mathbf{n}_{\mathbf{0}}$

Cvomplna

Let $f(x)$ be a function defined as follows:

- If x is odd, $f(x)=10 x$
- If x is even, $f(x)=100 \mathbf{x}^{2}$

Is there a $\mathbf{c}_{\text {low }}$ and $\mathbf{c}_{\text {high }}$ for which...
$f(n) \geq c_{\text {low }} n^{2} \quad$ and $\quad f(n) \leq c_{\text {high }} n$
... for all \mathbf{n} greater than some \mathbf{n}_{0}

Examples

$$
\begin{gathered}
f_{1}(n)=\sum_{i=1}^{5 n}\left(n^{2} 2^{i}\right) \\
f_{2}(n)=\sum_{i=\frac{3}{4} n}^{n} i \\
f_{3}(n)=\sum_{i=1}^{n} \sum_{j=i}^{n} 2 \\
f_{4}(n)=\sum_{i=1}^{\log (n)}\left(5 \cdot 2^{i}+n\right) \\
f_{5}(n)=\sum_{i=5}^{\log (n)+5}(3 \cdot i \cdot \log (n)) \\
f_{6}(n)=\sum_{i=2}^{4} \log (i)
\end{gathered}
$$

For each of the functions to the left:

1. Compute the closed form of the summation (remove all summation terms)
2. Provide a big- Θ bound for the function.
3. Arrange them in order of complexity class.
