CSE 250 Recitation

Mar 06 - Mar 10: Probability, Stacks and Queues

Random Variables

A random variable X is the value of some unknown outcome.

- E.g., Roll 4 : is 1 with probability $\%$, 2 with probability $\%$, 3 with...
- Random variables are usually capital letters
- We write $P[X=i]$ to say the probability that random variable X has value i

Probability Rules

Probabilities are all between 0 and 1 (0% chance to 100% chance)

- $P[X=i]$ is a number between 0 and 1

The sum of probabilities for all possible outcomes is 1.0

- $\Sigma_{\mathrm{i}} \mathrm{P}[\mathrm{X}=\mathrm{i}]=1$

The probability that something does not happen is 1 - the probability it does

- $P[X \neq i]=(1-P[X=i])$

Expectation Rules

- $E[X]=P_{1} X_{1}+P_{2} X_{2}+P_{3} X_{3}+P_{3} X_{3}+\ldots+P_{n} X_{n}$
- $E[X+Y]=E[X]+E[Y]$
- $E[X Y]=E[X] E[Y]$
(always)
(if X, Y are independent)

Expectations

Suppose you roll a 6-sided die 10 times (With rolls $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{10}$)
What is the expected sum of the rolls?
What is the expected product of the rolls?
How does this change for, say, n rolls?
What if X_{i} is an i -sided die?

Probability Example

Let's say you draw a card from a standard deck of cards, and if that card is a diamond, then you win $\$ 50$, if it is a heart you win $\$ 10$, otherwise you win 0 .

Let X be the random variable representing the amount of money you win.
What is $P[X=50]$? $P[X=10]$? $P[X=0]$? $P[X=15]$?
What is $\mathrm{E}[\mathrm{X}]$?

Relating this back to code

When we make a random decision in our algorithm that affects the runtime of our code, then we can consider the expected value of the runtime.

Here the outcome is a specific runtime

And the probabilities are the probability that your code chooses a given outcome

Each outcome occurs with probability $1 / n$
$\left\{\begin{array}{l}T(0)+T(n-1)+\Theta(n) \\ T(1)+T(n-2)+\Theta(n) \\ T(2)+T(n-3)+\Theta(n) \\ . \\ T(n-2)+T(1)+\Theta(n) \\ T(n-1)+T(0)+\Theta(n)\end{array}\right.$
if $X=1$
if $X=2$
if $X=3$
if $X=n-1$
if $X=n$

