
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Class Recap / Final Review

mailto:epmikida@buffalo.edu

Announcements

● Current progress on evaluations: 51%
● WA4 should be released tonight

2

CSE250 Road
Map

Analysis
Tools/Techniques

ADTs Data
Structures

Asymptotic Analysis,
(Unqualified) Runtime
Bounds

Seq Array

Amortized Runtime Seq, Buffer ArrayBuffer

Seq Linked Lists

Recursive analysis, divide
and conquer,
Average/Expected Runtime

Stack, Queue,
PriorityQueue

3

CSE250 Road
Map

Analysis
Tools/Techniques

ADTs Data
Structures

Stack, Queue,
PriorityQueue

Graphs EdgeList,
Adjacency List,
Adjacency Matrix

Heaps, Trees BST, AVL Tree,
Red-Black Tree

HashTables

Miscellaneous

4

Sequences (what can you do with them?)

● Enumerate every element in sequence
○ ie: print out every element, sum every element

● Get the "nth" element
○ ie: what is the first element? what is the 42nd element?

● Modify the "nth" element
○ ie: set the first element to x, set the third element to y

5

Abstract Data Types (ADTs)

● The specification of what a data structure can do

ADT

Read everything

Read "nth" element

Update "nth" element

What's in the box? …we
don't know, and in some
sense…we don't care

Usage is governed by what we can do, not how it is done 6

The Seq ADT

apply(idx: Int): [A]
Get the element (of type A) at position idx

iterator: Iterator[A]
Get access to view all elements in the sequence, in order, once

length: Int
Get the number of elements in the seq

7

The mutable.Seq ADT

apply(idx: Int): [A]
Get the element (of type A) at position idx

iterator: Iterator[A]
Get access to view all elements in the sequence, in order, once

length: Int
Count the number of elements in the seq

insert(idx: Int, elem: A): Unit
Insert an element at position idx with value elem

remove(idx: Int): A
Remove the element at position idx, and return the removed value

8

Array[T]:Seq[T]

What does an Array of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● n * sizeof(T) bytes for the data

n sizeof(T) a(0) a(1) a(2) a(3) a(4) …

9

ArrayBuffer[T]:Buffer[T]

What does an ArrayBuffer of n items of type T actually look like?

● 4 bytes for n (optional)
● 4 bytes for sizeof(T) (optional)
● 4 bytes for the number of used fields
● n * sizeof(T) bytes for the data

n sizeof(T) u
a(1)
or

None
…

a(2)
or

None

a(3)
or

None

a(4)
or

None

10

Linked Lists

HEAD

None

11

Linked Lists

HEAD

NoneA

12

Linked Lists

HEAD

NoneA B

13

Linked Lists

HEAD

NoneA B C

14

Linked Lists

HEAD

None

A B

CG

I

J

E

K

DH

F

L
15

Implementing apply

For Array and ArrayBuffer:
● Let a be the memory address of the first element of the array
● Let s be the size of each element in the array
● Then we know element i is located at address a + s * i

For LinkedList:
● We know where the first element is located (and maybe the last)
● We have no idea where the ith element is
● All we can do is follow the references until we get there

16

Comparing Random Access for Array vs List

Array List

17

Comparing Random Access for Array vs List

Array List

Let’s ignore the specific numbers and clean things up a bit…

18

Comparing Random Access for Array vs List

Array List

19

Comparing Random Access for Array vs List

Array List

What differentiates these two algorithms is how they
scale with input size (the shape of the function)

20

Asymptotic Analysis

Idea: Capture this behavior by treating the number of steps as a function of
the input size

21

Growth Functions

Not a function in code…but a mathematical function:

n: The “size” of the input

ie: number of users, rows, pixels, etc

f(n): The number of “steps” taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

22

Some Basic Assumptions:

Problem sizes are non-negative integers

We can’t reverse time…(obviously)

Smaller problems aren’t harder than bigger problems

23

Runtime as a Function

24

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2

In CSE 250, we live over
here

25

Attempt #3: Asymptotic Analysis

Case 1: (f grows faster; g is better)

Case 2: (g grows faster; f is better)

Case 3: (f and g “behave” the same)

26

Goal of “Asymptotic Analysis”

We want to organize growth functions into different Complexity Classes

Within the same complexity class, functions “behave the same”

To do this, focus on the dominating term…

27

Why Focus on Dominating Terms?

10 20 50 100 1000
0.43 ns 0.52 ns 0.62 ns 0.68 ns 0.82 ns

0.83 ns 1.01 ns 1.41 ns 1.66 ns 2.49 ns

2.5 ns 5 ns 12.5 ns 25 ns 0.25 µs

8.3 ns 22 ns 71 ns 0.17 µs 2.49 µs

25 ns 0.1 µs 0.63 µs 2.5 µs 0.25 ms

25 µs 0.8 ms 78 ms 2.5 s 2.9 days
0.25 µs 0.26 ms 3.26 days 1013 years 10284 years
0.91 ms 19 years 1047 years 10141 years 🤯 28

Asymptotic Analysis

29

f(n
)

Asymptotic Analysis

30

f(n
)

Functions that grow faster

Functions that grow slower

Functions that grow "at the same rate"

Asymptotic Analysis

31

f(n
)

𝚯(f) is the set of
functions that grow at
the same rate.

If g(n) ∈ 𝚯(f) then g
and f behave the same

Asymptotic Analysis

32

f(n
)

O(f) is the set of functions
that grow slower (or the
same as) f

If g(n) ∈ O(f) then g "≤" f

Asymptotic Analysis

33

f(n
)

𝛀(f) is the set of
functions that grow
faster (or the same as) f

If g(n) ∈ 𝛀(f) then g "≥"
f

Recap of Runtime Complexity

Big-O — Upper Bound
● Growth functions in the same or smaller complexity class
● f(n) ∈ O(g(n)) iff f(n) ≤ c*g(n) for some constant c, and n > n0

Big-𝛀 — Lower Bound
● Growth functions in the same or bigger complexity class
● f(n) ∈ 𝛀(g(n)) iff f(n) ≥ c*g(n) for some constant c, and n > n0

Big-𝚯 — Tight Bound
● Growth functions are in the same complexity class
● f(n) ∈ 𝚯(g(n)) iff f(n) ∈ O(g(n)) and f(n) ∈ 𝛀(g(n))

34

Back to Seq

apply:

● Array/ArrayBuffer: 𝚯(1)
● LinkedList: O(n)

Iteration:
● Array/ArrayBuffer: 𝚯(n)
● LinkedList: O(n)

35

Back to Seq

insert

● ArrayBuffer: O(n) ← move elements and maybe resize
● LinkedList: O(n) ← find the insertion point, then insert

prepend/append

● ArrayBuffer: O(n) ← move elements and maybe resize
● LinkedList: O(1) ← assuming we have head/tail, no need to search

36

Back to Seq

insert

● ArrayBuffer: O(n) ← move elements and maybe resize
● LinkedList: O(n) ← find the insertion point, then insert

prepend/append

● ArrayBuffer: O(n) ← move elements and maybe resize
● LinkedList: O(1) ← assuming we have head/tail, no need to search

37

Most of these appends are O(1)...can we include
that context in our analysis?

Cost of n appends in a row…

𝚯(1) 𝚯(1) 𝚯(1)… …
 1 X X+1 X+2 2X 2X+1 2X+2 n-1 n

𝚯(1) 𝚯(1)…𝚯(1)

𝚯
(X*2)𝚯

(X)

𝚯
(X*4)

X * 𝚯(1)
for X appends

𝚯(X) +(X-1)* 𝚯(1)
for X appends

𝚯(X*2) +(X*2-1)* 𝚯(1)
for X*2 appends

38

newLength = data.size * 2

So…how many red boxes for n inserts? 𝚯(log(n))

How much work for box j?

How much work for n inserts?

Total for n insertions: 𝚯(n)
39

Amortized Runtime

If n calls to a function take O(T(n))...

We say the Amortized Runtime is O(T(n) / n)

The amortized runtime of append on an ArrayBuffer is: O(n/n) = O(1)
The unqualified runtime of append on an ArrayBuffer is: O(n)

40

Aside on Summations

When analyzing code, we often have multiple steps one after another

To determine the total runtime, we add the number of steps

for i ← 0 to n, by -1:

 for j ← 0 to i:

 // do something

The above inner loop first does 1 iteration, then 2 iterations, then 3, then 4…

Total number of iterations: 1 + 2 + 3 + 4 + … + n =

41

Understanding summation and
summation rules are important!

Algorithms with Randomness

What about algorithms with a random component, ie QuickSort?

42

QuickSort: Worst-Case Runtime

What is the worst-case runtime?

Remember: This is called the unqualified runtime…we don't take any extra
context into account

43

QuickSort: Worst-Case Runtime

Is the worst case runtime representative?

No! (the actual runtime will almost always be faster)

But what can we say about runtime?

44

QuickSort Runtime

Now we can write our runtime function in terms of random variables:

45

QuickSort Runtime

…and convert it to the expected runtime over the variable X

This looks like the runtime of MergeSort, so now our hypothesis is that our
Expected Runtime is n log(n) 46

What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average Bound
…we don't have any guarantees

← Unqualified runtime

47

A Bit More on Tight Bounds

If f(n) is a Tight Upper Bound
Then f(n) is an upper bound AND there is no smaller upper bound

If f(n) is a Tight Lower Bound
Then f(n) is a lower bound AND there is no larger lower bound

If f(n) is a Tight Upper Bound AND a Tight Lower Bound
Then f(n) is a tight bound, or a 𝚯 bound

48

Seq Summary So Far

Operation Array[T] ArrayBuffer[T] List[T] (index) List[T] (ref)

apply(i) 𝚯(1) 𝚯(1) 𝚯(i), O(n) 𝚯(1)

update(i, val) 𝚯(1) 𝚯(1) 𝚯(i), O(n) 𝚯(1)

insert(i, val) 𝚯(n) O(n) 𝚯(i), O(n) 𝚯(1)

remove(i, val) 𝚯(n) 𝚯(n-i), O(n) 𝚯(i), O(n) 𝚯(1)

append(i) 𝚯(n) O(n), Amortized 𝚯(1) 𝚯(i), O(n) 𝚯(1)

49

Ways to Access Elements of a Sequence

By Index: Get the element at a particular position

By Reference: Get the element with a particular reference

(Search) By Value: Find the element with a particular value (or key)
● For an unsorted array or list, this takes O(n) time (have to check all)
● For a sorted array, only need O(log n) steps

50

Variants on Sequences (more ADTs)

Stack
● LIFO: last in first out
● push elements to the top of the stack
● pop elements from the top of the stack

Queue
● FIFO: first in first out
● enqueue elements to the end of the queue
● dequeue elements from the front of the queue

PriorityQueue
● Elements ordered by priority
● dequeue removes the highest priority element

51

Recap

Stacks: Last In First Out (LIFO)
● Push (put item on top of the stack) 𝚯(1) (or amortized O(1))
● Pop (take item off top of stack) 𝚯(1)
● Top (peek at top of stack) 𝚯(1)

Queues: First in First Out (FIFO)
● Enqueue (put item on the end of the queue) 𝚯(1) (or amortized O(1))
● Dequeue (take item off the front of the queue) 𝚯(1)
● Head (peek at the item in the front of the queue) 𝚯(1)

Stacks and Queues can be easily implemented with Arrays and Linked Lists. PriorityQueues
can be…but not very efficiently 52

A New ADT…PriorityQueue

PriorityQueue[A <:Ordering]

enqueue(v: A): Unit
Insert value v into the priority queue

dequeue: A
Remove the greatest element in the priority queue

head: A
Peek at the greatest element in the priority queue

53

Priority Queues

Two mentalities…

Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized ("Insertion Sort")

54

Lazy Priority Queue

Base Data Structure: Linked List

enqueue(v: A): Unit
Append t to the end of the linked list. O(1)

dequeue/head : A
Traverse the list to find the largest value. O(n)

55

Proactive Priority Queue

Base Data Structure: Linked List

enqueue(v: A): Unit
Insert t in reverse sorted order. O(n)

dequeue/head : A
Refer to the first item in the list. O(1)

56

Priority Queues

Operation Lazy Proactive

enqueue O(1) O(n)

dequeue O(n) O(1)

head O(n) O(1)

Can we do better?
57

Priority Queues

Idea: Keep the priority queue "kinda" sorted.

Hopefully "kinda" sorted is cheaper to maintain than a full sort,

but still gives us some of the benefits.

58

Binary Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≥ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

This makes it easy to encode into an array (later today)

59

Valid Max Heaps

31

20 4

105 2 1

5

5 4

22 2 1

1

10

9 8

67 5

60

The Heap ADT

enqueue(elem: A): Unit [AKA pushHeap]
Place an item into the heap

dequeue: A [AKA popHeap]
Remove and return the maximal element from the heap

head: A
Peek at the maximal element in the heap

length: Int
The number of elements in the heap

61

Heap.enqueue

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current > parent

a. Swap current with parent
b. Repeat with current ← parent

62

Heap.enqueue

10

5 4

22 2 1

1

What if we enqueue 6?

63

Heap.enqueue

10

5 4

22 2 1

1

What if we enqueue 6?

Place in the next available
spot

6
64

Heap.enqueue

10

5 4

26 2 1

1

What if we enqueue 6?

Swap with parent if it is
bigger than the parent

2
65

Heap.enqueue

10

6 4

25 2 1

1

What if we enqueue 6?

Continue swapping
upwards…

2
66

Heap.enqueue

10

6 4

25 2 1

1

What if we enqueue 6?

Stop swapping when we
are no longer bigger than
our parent

2

✓

67

Heap.dequeue

Idea: Replace root with the last element then fix the heap

1. Start with current ← root
2. While current has a child > current

a. Swap current with its largest child
b. Repeat with current ← child

68

Heap.dequeue

10

6 4

25 2 1

1

What if we call dequeue?

2
69

Heap.dequeue 6 4

25 2 1

1

What if we call dequeue?

Remove and return the
root

2
70

Heap.dequeue

2

6 4

25 2 1

1

What if we call dequeue?

Make the last item the
new root

71

Heap.dequeue

2

6 4

25 2 1

1

What if we call dequeue?

Check for our largest child

72

Heap.dequeue

6

2 4

25 2 1

1

What if we call dequeue?

If the largest child is
bigger than us, swap

73

Heap.dequeue

6

2 4

25 2 1

1

What if we call dequeue?

Continue swapping down
the tree as necessary…

74

Heap.dequeue

6

5 4

22 2 1

1

What if we call dequeue?

Continue swapping down
the tree as necessary…

75

Heap.dequeue

6

5 4

22 2 1

1

What if we call dequeue?

Stop swapping when our
children are no longer
bigger ✓

76

Priority Queues

Operation Lazy Proactive Heap

enqueue O(1) O(n) O(log(n))

dequeue O(n) O(1) O(log(n))

head O(n) O(1) O(1)

77

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10 6 4 5 2 2 1 1 2 4

4

Enqueue always inserts at the
arrays end (then we fixup)

78

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (unqualified O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (unqualified O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: worst-case O(log(n))

79

Heapify

6

4 7

108 2 1

Given an arbitrary array
(show as a tree here) turn
it into a heap

80

Heapify

6

4 7

108 2 1

Start at the lowest level,
and call fixDown on
each node (0 swaps per
node)

81

Heapify

6

4 7

108 2 1

Do the same at the next
lowest level (at most one
swap per node)

82

Heapify

6

10 7

48 2 1

Do the same at the next
lowest level (at most one
swap per node)

✓

83

Heapify

6

10 7

48 2 1

Continue upwards (now at
most 2 swaps per node)

84

Heapify

10

6 7

48 2 1

Continue upwards (now at
most 2 swaps per node)

85

Heapify

10

8 7

46 2 1

Continue upwards (now at
most 2 swaps per node)

86

Heapify

10

8 7

46 2 1

Continue upwards (now at
most 2 swaps per node)

87

Heapify

10

8 7

46 2 1

Continue upwards (now at
most 2 swaps per node)

This whole process only takes O(n) time! 88

Graphs

89

Let's Talk About Graphs

A graph is a pair (V,E) where:

● V is a set of vertices
● E is a set of vertex pairs called edges
● Edges and vertices may also store data (labels)

90

Edge Types

Directed Edge (asymmetric relationship)

● Ordered pair of vertices (u, v)
● origin (u) →destination (v)

Undirected Edge (symmetric relationship)

● Unordered pair of vertices (u,v)

Directed Graph: All edges are directed

Undirected Graph: All edges are undirected

transmit bandwidth

round-trip latency

91

Terminology

Endpoints of an edge
U, V are endpoints of a

Adjacent Vertices
U, V are adjacent

Degree of a vertex
X has degree 5

92

Terminology

Edges indecent on a vertex
a, b, d are incident on V

Parallel Edges
h, i are parallel

Self-Loop
j is a self-loop

Simple Graph
A graph without parallel edges or
self-loops

93

Terminology

Path
A sequence of alternating vertices
and edges
● begins with a vertex
● ends with a vertex
● each edge preceded/followed

by its endpoints

Simple Path
A path such that all of its vertices
and edges are distinct

V, b, X, h, Z is simple

U, c, W, e, X, g, Y, f, W, d, V is not simple
94

Terminology

Cycle
A path the begins and ends with
the same vertex. Must contain at
least one edge

Simple Cycle
A cycle such that all of its
vertices and edges are distinct

V, b, X, g, Y, f, W, c, U, a, V is a
simple cycle

U, c, W, e, X, g, Y, f, W, d, V, a, U is a
cycle that is not simple 95

Graph Properties

Proof: Each edge is counted twice

96

A (Directed) Graph ADT

Two type parameters (Graph[V,E])
V: The vertex label type
E: The edge label type

Vertices
…are elements (like Linked List Nodes)
…store a value of type V

Edges
…are also elements
…store a value of type E

97

Attempt 1: Edge List

Data Model:

A List of Edges
(ArrayBuffer)

A List of Vertices
(ArrayBuffer)

98

Attempt 1: Linked Edge List

Data Model:

A List of Edges
(DoublyLinkedList)

A List of Vertices
(DoubleLinkedList)

99

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

100

Edge List Summary

101

How can we improve?

Idea: Store the in/out edges for each vertex!

102

Adjacency List Summary

Graph

vertices: LinkedList[Vertex]
edges: LinkedList[Edge]

Vertex

label: T
node: LinkedListNode
inEdges: LinkedList[Edge]
outEdges: LinkedList[Edge]

Edge

label: T
node: LinkedListNode
inNode: LinkedListNode
outNode: LinkedListNode

Storing the list of incident edges in
the vertex saves us the time of
checking every edge in the graph.

The edge now stores additional nodes
to ensure removal is still 𝚯(1)

103

Adjacency List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.incidentEdges: O(deg(vertex))
● vertex.edgeTo: O(deg(vertex))
● Space Used: O(n) + O(m)

104

Adjacency Matrix

Destination

U V W

U - a -

V - - b

W c - -

O
rig

in

105

Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)

Just change a single entry of the matrix

Resize and copy the
whole matrix

Check the row and
column for that vertex

Check a single entry of the matrix

How does this relate to space of
edge/adjacency lists? If the matrix is "dense" it's about the same 106

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Spanning Subgraph of G107

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

2 connected
components 108

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A Spanning Tree of G Another Spanning Tree of G

109

DFS (LIFO order…Stacks) BFS (FIFO order…Queues)

DFS vs BFS

✓ ✓

✓

✓

✓

A: 0

B: 1

C:2

D:1
E:1

✓ ✓

✓

✓

✓

A

B

C

D
E

BACK Edge(v,w): w is an ancestor of v in
the discovery tree

CROSS Edge(v,w): w is at the same or next level
as v

110

DFS Traversal vs BFS Traversal

Application DFS BFS

Spanning Trees ✓ ✓

Connected Components ✓ ✓

Paths/Connectivity ✓ ✓

Cycles ✓ ✓

Shortest Paths ✓

Articulation Points ✓
111

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)
4. All calls to DFSOne O(|E|)

 O(|V| + |E|)

112

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Add each vertex to the work queue O(|V|)
4. Process each vertex O(|E|)

 O(|V| + |E|)

113

Djikstra's Algorithm

● DFS uses a Stack to manage the search (LIFO order)
● BDS uses a Queue to manage the search (FIFO order)
● Djiktra's uses a PriorityQueue to manage the search (priority order)

○ Finds the shortest path in a weighted graph
○ Runs in ~O(|V| log |V|)

114

Trees, Sets, Bags

115

(Even More) Tree Terminology

Rooted, Directed Tree - Has a single root node (node with no parents)

Parent of node X - A node with an out-edge to X (max 1 parent per node)

Child of node X - A node with an in-edge from X

Leaf - A node with no children

Depth of node X - The number of edges in the path from the root to X

Height of node X - The number of edges in the path from X to the deepest leaf

116

(Even More) Tree Terminology

Level of a node - Depth of the node + 1

Size of a tree (n) - The number of nodes in the tree

Height/Depth of a tree (d) - Height of the root/depth of the deepest leaf

117

(Even More) Tree Terminology

Binary Tree - Every vertex has at most 2 children

Complete Binary Tree - All leaves are in the deepest two levels

Full Binary Tree - All leaves are at the deepest level, therefore every vertex
has exactly 0 or 2 children, and d = log(n)

118

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints
● No duplicate keys
● For every node XL in the left subtree of node X: XL.key < X.key
● For every node XR in the right subtree of node X: XR.key > X.key

X partitions its children

119

BST Operations

What is the runtime in terms of n? O(n)

Does it need to be that bad?

Operation Runtime

find O(d)

insert O(d)

remove O(d)

120

BST Operations

What is the runtime in terms of n? O(n)

log(n) ≤ d ≤ n

Operation Runtime

find O(d)

insert O(d)

remove O(d)

121

Tree Depth vs Size

4

2 6

31 5 7

1

2

3

4

5

If height(left) ≈ height(right)

d = O(log(n))

If height(left) ≪ height(right)

d = O(n)
We want this, not this 122

Keeping Depth Small - Two Approaches

Option 1

Keep tree balanced: subtrees +/-1
of each other in height

(add a field to track amount of
"imbalance")

Option 2

Keep leaves at some minimum
depth (d/2)

(Add a color to each node marking it
as "red" or "black")

123

Rebalancing Trees (rotations)

A

B

X Y Z

124

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B) 125

Rebalancing Trees (rotations)

A

B

X Y Z

Rotate(A, B) 126

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child
A

B

X Y Z

Rotate(A, B) 127

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? A

B

X Y Z

Rotate(A, B) 128

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes! A

B

X Y Z

Rotate(A, B) 129

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity?

A

B

X Y Z

Rotate(A, B) 130

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

A

B

X Y Z

Rotate(A, B) 131

Rebalancing Trees (rotations)

A became B's left child

B's left child became A's right child

Is ordering maintained? Yes!

Complexity? O(1)

This is called a left rotation

(right rotation is the opposite)

A

B

X Y Z

Rotate(A, B) 132

AVL Trees

An AVL tree (Adelson-Velsky and Landis) is a BST
where every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced: |height(root.right) - height(root.left)| ≤ 1

133

AVL Trees

An AVL tree (Adelson-Velsky
and Landis) is a BST where
every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced:
|height(root.right) - height(root.left)| ≤ 1

1

-1

0-1

-1

0

0

21

64

3 63 98

14

623 3

2

3 3 3

4 4
134

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

135

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST) O(d) = O(log n)
2. Insert the new leaf and set balance factor to 0 O(1)
3. Trace path back up to root and update balance factors O(d) = O(log n)

a. If a balance factor becomes +/-2 then rotate to fix O(1)

136

Maintaining Balance - Another Approach

Enforcing height-balance is too strict (May do “unnecessary” rotations)

Weaker (and more direct) restriction:
● Balance the depth of EmptyTree nodes
● If a, b are EmptyTree nodes, then enforce that for all a, b:

○ depth(a) ≥ (depth(b) ÷ 2)

or

○ depth(b) ≥ (depth(a) ÷ 2)

137

Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

If no EmptyTree has depth less than d/2, then
this part of the tree must be full. n ≥ 2d/2 nodes

log(n) ≥ d/2
2 log(n) ≥ d → d ∈ O(log(n))

Therefore enforcing these constraints means that
tree depths is O(log(n))...

So how do we enforce them (efficiently)? 138

Red-Black Trees

To Enforce the Depth Constraint on EmptyTree nodes:

1. Color each node red or black
a. The # of black nodes from each EmptyTree node to root must be same
b. The parent of a red node must always be black

2. On insertion (or deletion)
a. Inserted nodes are red (won't break 1a)
b. Repair violations of 1b by rotating and/or recoloring

i. Make sure repairs don't break 1a

139

Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3

Label each EmptyTree with the number of black nodes
along the path back to the root. All 3 in this case ✓

140

Red-Black Tree

Note: Each insertion creates at most one red-red parent-child conflict
● O(1) time to recolor/rotate to repair the parent-child conflict
● May create a red-red conflict in grandparent

○ Up to d/2 = O(log(n)) repairs required, but each repair is O(1)
● Insertion therefore remains O(log(n))

Note: Each deletion removes at most one black node (red doesn't matter)
● O(1) time to recolor/rotate to preserve black-depth
● May require recoloring (grand-)parent from black to red

○ Up to d = O(log(n)) repairs required
● Deletion therefore remains O(log(n))

141

HashTables

142

Map Implementations

Map[K,V] as a Sorted Sequence
● apply O(log(n)) for Array, O(n) for Linked List
● add O(n)
● removeO(n)
Map[K,V] as a balanced Binary Search Tree
● apply O(log(n))
● add O(log(n))
● removeO(log(n))

143

Finding Items

For most of these operations, the expensive part is finding the record…

So…let's skip the search

144

Assigning Bins

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: If our records are names, first letter of name → [0,26)

145

Assigning Bins

A F G H…B … Z

add("Halloween") → "Halloween"[0] == "H" == 7

Halloween

This computation is O(1)

146

Assigning Bins

A F G H…B … Z

add("Friday the 13th") → "Friday the 13th"[0] == "F" == 5

HalloweenFriday the
13th

147

Assigning Bins

A F G H…B … Z

add("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutFriday the
13th

148

Assigning Bins

A F G H…B … Z

add("Babadook") → "Babadook"[0] == "B" == 1

HalloweenGet OutBabadook Friday the
13th

149

Assigning Bins

A F G H…B … Z

find("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutBabadook Friday the
13th

Find in constant time!

150

Assigning Bins

A F G H…B … Z

find("Scream") → "Scream"[0] == "S" == 18

HalloweenGet OutBabadook Friday the
13th

Determine that "Scream" is not in the Set in constant time!

151

Assigning Bins

Pros
● O(1) insert
● O(1) find
● O(1) remove

Cons
● Wasted space (4/26 slots used in the example, will we ever use "Z"?)
● Duplication (What about inserting Frankenstein)

152

Assigning Bins

A F G H…B … Z

add("Frankenstein")?

HalloweenGet OutBabadook Friday the
13th

∅ ∅ ∅… ∅ … ∅

FFrankenstein

∅

Making each bucket a linked
list solves the collision

problem → 153

LinkedList Bins

Now we can handle as many duplicates as we need. But are we losing our
constant time operations?

How many elements are we expecting to end up in each bucket?

Depends partially on our choice of Hash Function

154

Picking a Hash Function

Desirable features for h(x):
● Fast — needs to be O(1)
● "Unique" – As few duplicate bins as possible

155

Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y

156

Refresher on Modulus

The modulus function takes any integers n and d, and returns a number r in
the range [0, d), such that n = q * d + r. (It returns the remainder of n / d)

If my hash table has 7 buckets, and I insert an element with hash code 73,
what bucket would it go in? 73 % 7 = 3

0 1 2 3 4 5 6

157

Pseudo-Random Hash Function

158

Pseudo-Random Hash Function

159

Pseudo-Random Hash Function

160

Pseudo-Random Hash Function

…given this information, what do the
runtimes of our operations look like?161

Pseudo-Random Hash Function

Expected runtime of insert, apply, remove: O(n/N)

Worst-Case runtime of insert, apply, remove: O(n)

162

Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated? Resize!

163

Hash Function Recap

● We now have pseudo-random hash functions that run in O(1)
○ They act as if they are uniformly random

■ Will evenly distribute elements to buckets
■ hash(x) is uncorrelated with hash(y)

○ They are deterministic (hash(x) will always return the same value)
● We can use these hash functions to determine which bucket an

arbitrary element belongs in in O(1) time
● There are expected to be n/N elements in that bucket

○ So runtime for all operations is expected O(1) + O(n/N)

164Next goal: Make this a constant

Rehashing

When we insert an element that would exceed the load factor we:
1. Resize the underlying array from Nold to Nnew
2. Rehash all of the elements from their old bucket to their new bucket

a. Element x moves from hash(x) % Nold to hash(x) % Nnew

How long does this take?
1. Allocate the new array: O(1)
2. Rehash every element from the old array to the new: O(Nold + n)
3. Free the old array: O(1)
Total: O(Nold + n)

165

Recap of HashTables (so far…)

Current Design: HashTable with Chaining
● Array of buckets
● Each bucket is the head of a linked list (a "chain" of elements)

166

Runtime for apply(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Total: O(chash + 𝛂 · cequality) = O(1)

Unqualified Worst-Case:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(n · cequality) = O(n)
3. Total: O(chash + n · cequality) = O(n)

167

Runtime for remove(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Find the record in the bucket: O(𝛂 · cequality) = O(1)
3. Remove (by reference): O(1)
4. Total: O(chash + 𝛂 · cequality + 1) = O(1)

Unqualified Worst-Case:
1. Find the record in the bucket: O(n · cequality) = O(n)
2. Total: O(chash + n · cequality + 1) = O(n)

Only one extra constant-time step to remove

168

Runtime for insert(x)

Expected Runtime:
1. Find the bucket (call our hash function): O(chash) = O(1)
2. Remove x from bucket if present: O(𝛂 · cequality + 1)
3. Prepend to bucket: O(1)
4. Rehash if needed: O(n · chash + N) (amortized O(1))
5. Total: O(chash + 𝛂 · cequality + 3) = O(1)

Unqualified Worst-Case:
1. Remove x from bucket if present: O(n · cequality + 1) = O(n)
2. Total: O(chash + n · cequality + 3) = O(n)

One additional constant-time
step to prepend, and then
potentially the need to
rehash, but that is amortized
O(1)

169

HashTables with Chaining

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 2

0 1 2 3 4 5 6BD A E
CF

Collisions are resolved by adding the
element to the buckets linked list

170

HashTables with Open Addressing

hash(A) = 4 ← no collision

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

171

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5 ← no collision

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B

172

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5 ← collision! Search for next free bucket

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B

C

173

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5 ← collision! Search for next free bucket

hash(D) = 2

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B C

174

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2 ← no collision!

hash(E) = 6

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CD

175

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6 ← collision! cascade to 0

hash(F) = 4

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CDE

176

HashTables with Open Addressing

hash(A) = 4

hash(B) = 5

hash(C) = 5

hash(D) = 2

hash(E) = 6

hash(F) = 4 ← collision! Cascade all the way to 1

0 1 2 3 4 5 6A

With Open Addressing collisions are
resolved by "cascading" to the next
available bucket

B CDE F

177

Cuckoo Hashing

Idea: Use two hash functions, hash1 and hash2

To insert a record X:

1. If hash1(X) and hash2(X) are both available, pick one at random
2. If only one of those buckets is available, pick the available bucket
3. If neither is available, pick one at random and evict the record there

a. Insert X in this bucket
b. Insert the evicted record following the same procedure

178

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A

179

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A B

180

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A B

C can't go in either bucket, so evict one at
random (let's say B) and reinsert the evicted
element

C

181

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C

B can only go in 4 now, but 4 is free

B

182

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C

B can only go in 4 now, but 4 is free

B

183

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B D

184

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

185

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

What if we try to insert F which hashes to
either 1 or 3?

186

HashTables with Cuckoo Hashing

hash1(A) = 1 hash2(A) = 3

hash1(B) = 2 hash2(B) = 4

hash1(C) = 2 hash2(C) = 1

hash1(D) = 4 hash2(D) = 6

hash1(E) = 3 hash2(E) = 4

0 1 2 3 4 5 6A C B DE

What if we try to insert F which hashes to
either 1 or 3? We will loop infinitely trying to
evict…so limit the number of eviction
attempts then do a full rehash 187

Cuckoo Hashing

So with Cuckoo Hashing, we may have to rehash early, and may follow
long chains of evictions inserting, but…

What is the runtime of apply/remove?

188

Cuckoo Hashing

So with Cuckoo Hashing, we may have to rehash early, and may follow
long chains of evictions inserting, but…

What is the runtime of apply/remove?

1. Check 2 different buckets: O(1)
2. That's it…no chaining, cascading etc…

Apply and remove are GUARANTEED O(1) with Cuckoo Hashing

189

HashTable Drawbacks?

…So the expected runtime of all operations is O(1)

Why would you ever use any other data structure?

● HashTables do not preserve ordering
● HashTables may waste a lot of memory
● Rehashing can be expensive
● Only guarantee on lookup time is that it is O(n)

190

Misc Topics

191

Algorithmic Complexity

Remember: O(f(n)) placed bounds on growth functions in general. Not
necessarily only for runtime growth functions…

Runtime Bounds (or Runtime Complexity)
● The algorithm takes O(...) time

Memory Bounds (or Memory Complexity)
● The algorithm needs O(...) storage

I/O Bounds (or I/O Complexity)
● The algorithm performs O(...) accesses to slower memory

192

The Memory Hierarchy (simplified)

Cache

Memory (RAM)

Solid State Drives (SSDs)

Hard Disk Drives (HDDs, "Spinning Rust")

Faster Bigger

193

Improving on Fence Pointers ISAM Index

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0
to find Level 1 page

2. Load and search
Level 1 page to find

Level 2 page

3. Load and search
Level 2 page to find

data page

4. Load and search data
page to find the record

194

ISAM Index

What if the data changes?

195

7 10 12 12 27

B+ Trees

Keep free space in your pages…but not too much free space

12 27

1 3 6 7 8 9 10 11 12 14 19 21 22 27

Ensure all pages are at least
half full

If a new
element gets
added to a full
page, split it
into two pages

196

Lossy Sets

LossySet[A]

add(a: A): Insert a into the set

apply(a: A):

● If a is in the set ALWAYS return true
● If a is not in the set USUALLY return false (returning true is OK)

197

Lossy Set

What does this gain for us?

Idea: If apply doesn't always need to be right, we don't need to store everything

198

Lossy Hash Set

class LossyHashSet[A](_size: Int) extends LossySet[A] {
 val bits = new Array[Boolean](_size)
 def add(a: A): Unit = {
 val bucket = a.hashCode % _size
 bits(bucket) = true
 }
 def apply(a: A): Boolean = {
 val bucket = a.hashCode % _size
 return bits(bucket)
 }
}

199

Lossy Set Example

add("Frankenstein") apply("Scream")? TRUE
add("Get Out") apply("Saw")? TRUE
add("Scream") apply("The Candyman")? FALSE
add("Hellraiser") apply("Dracula")? FALSE
add("Us") apply("Friday the 13th")? TRUE
add("Friday the 13th")

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

200

k-D Trees

● Can generalize to k>2 dimensions
○ Depth 0: Partition on Dimension 0
○ Depth 1: Partition on Dimension 1
○ …
○ Depth k-1: Partition on Dimension k-1
○ Depth k: Partition on Dimension 0
○ Depth k+1: Partition on Dimension 1
○ Depth i: Partition on Dimension (i mod k)

● In practice, range() and knn() become ~ O(n) for k > 3
○ If a subtree’s range overlaps with the target in even one dimension, we

need to search it. (Curse of Dimensionality)

The name k-D tree comes from
this generalization

(k-Dimensional Tree)

https://en.wikipedia.org/wiki/Curse_of_dimensionality

k-D Tree

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

202

Partitions on x

Partitions on y

Partitions on x

Quad/Oct Trees Revisited

Idea: Let's organize the data (spatially) in a tree structure
● 2D space → use a quad tree
● 3D space → use an oct tree (each node has at most 8 children)

Unlike last time, let's partition the space we are simulating, rather than
the points in the space

203

Space Partitioning - 2D Example

Create a quad-tree by recursively
partitioning the space

● Divide the space evenly until there
is only one element per partition

● Internal tree nodes represent the
partitions, leaves are the actual
elements

204

Space Partitioning - 2D Example

205

∅ ∅

∅

Other Problems: Ray/Path Tracing

Which object does this ray of light hit?
Do we have to check every single object?
How can we organize these objects?

206

Other Problems: Ray/Path Tracing

207

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)

Other Problems: Ray/Path Tracing

208

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

High-Level Summary

● We've seen both trees and hash tables as effective ways to organize
our data if we know we are going to be searching it often

● HashTables can be great for exact lookups
○ Think PA4: you may want to lookup a person with an exact (birthday,

zipcode) pair, and HashTable lets you do that very fast
● Trees and tree like structures work very well for "fuzzier" searches

○ What is "close" to this point? What object might this projectile hit? etc
○ The input to your search is not necessarily an exact element in your tree,

but the tree organizes the data in a way that directs your search

209

Thanks for a great semester!

210

