CSE 4/587 Spring 2023

Homework #2 - Spark

Due: 5/1/23

Content Covered
Spark

Homework Overview

For this homework you will get a bit of experience writing and running Spark code, and
performing some follow-up analysis. In general, you will install and set up Spark, write a basic
word count program, and then answer some questions about data flow in Spark applications.

General Homework Requirements

1. Work Environment: This homework must be written in Python.

2. Programming: Relevant tutorials and resources are linked below to aid in the
programming portion of this homework.

3. Academic Integrity: You will get an automatic F for the course if you violate the
academic integrity policy.

4. Teams: This homework is an individual assignment. You are not permitted to work
with anyone else on this assignment. All work submitted must be yours and yours alone.

Submission Format

Your submission should be a single zip file that contains a src/ directory for your code, and a
single PDF report. Submissions must be made on UBLearns by 5/1/23 @ 11:59PM.
e Your src/ directory should contain your code files and your input dataset (10 txt files from
project gutenberg), and your list of stopwords.
e Your report should contain the answers to each of the questions below, including any
required screenshots of your application output.



CSE 4/587 Spring 2023

Setup

To prepare your development environment for this homework you must first install and set up
PySpark. Make sure to start this process as early as possible, issues WILL come up. To
install PySpark, follow the instructions here:
https://spark.apache.org/docs/latest/api/python/getting_started/install.html

Once you have Spark setup, you must also get the data you will be using for the homework. Go
to Project Gutenberg (https://www.gutenberg.org/ebooks/) and download 10 different books as
plain text files. Each of the files you download must be at least 100 kB in size, but the larger the
book the more interesting your results may be. You may use the same books you used from
HW #1.

Part 1 - Implement and Analyze Word Count [14/30 points]

Basic Word Count

For the first part of this homework, you must write a basic word count program that reads in a
single text file, counts the number of occurrences of each word in that text file, and outputs the
result back to a text file as a list of key-value pairs, where the key is the word, and the value is
the number of times the word occurred in the text file.

In addition to basic word counting your code must also do the following:

1. It must be case insensitive (see lower() in Python)
2. It must ignore all punctuation (see, for example, translate() in Python)
3. It mustignore stop words (see filter() in Spark)
4. The output must be sorted by count in descending order (see sortBy() in Spark)

To accomplish this you will use a combination of basic Python, and RDD operations in PySpark.

Any examples from class and any official Spark documentation can be used as reference
material. Cite any code you use directly as necessary. The following programming guide goes
over basics of getting started with Spark and should contain everything you need to complete
this part of the homework: https://spark.apache.org/docs/latest/rdd-programming-quide.html

Note: To make later parts of this HW easier, you should write your word count code in a function
that takes the Spark context as an argument so you can call your function from the interactive
PySpark REPL. See the in-class demo code as an example.


https://spark.apache.org/docs/latest/api/python/getting_started/install.html
https://www.gutenberg.org/ebooks/
https://spark.apache.org/docs/latest/rdd-programming-guide.html

CSE 4/587 Spring 2023

Extending Your Application

Once you have your basic word count working for a single text file as described above, you will
now extend it to work for a list of text files, combining the results from each file into a single RDD
of key-value pairs, where the key is the word and the value is the number of times that word
appeared across all passed in text files. The result should only be sorted and written to file once
after all text files have been processed.

Note: This is different from the in class example where we combined results using join(). See
instead union() in Spark.

Analysis

Answer the following questions based on your WordCount application.

1.

In the PySpark REPL, run your basic word count program on a single text file.
a. What are the 25 most common words? Include a screenshot of program output to
back-up your claim.
b. How many stages is execution broken up into? Explain why. Include a screenshot
of the DAG visualization from Spark's WebUI to back-up your claim.

In the PySpark REPL, run your extended word count program on all 10 text files.
a. What are the 25 most common words? Include a screenshot of program output to
back-up your claim.
b. How many stages is execution broken up into? Explain why. Include a screenshot
of the DAG visualization from Spark's WebUI to back-up your claim.

Your WordCount application should compute the same results as your WordCount
application from Homework #1. Answer the following based on your knowledge of both
MapReduce and Spark:

a. If you were running your WordCount programs in a large cluster or cloud
environment, and one of the nodes you were running on died mid computation,
how would your MapReduce and Spark programs handle this?

b. Explain one concrete benefit you experienced when writing the Spark version of
WordCount compared to the MapReduce version.



CSE 4/587 Spring 2023

Part 2 - Code Analysis [16/30 points]

Read through the following PySpark code snippet and answer the questions following:

1| lines = sc.textFile(file)

2| 1links = lines.map(lambda urls: parseNeighbors(urls)) \

3 .groupByKey ()

4 .cache()

5N = links.count()

6 | ranks = links.map(lambda u: (u[@], 1.0/N))

7

8| for i in range(iters):

9 contribs = links.join(ranks) \

10 .flatMap(lambda u: computeContribs(u[1][©@], u[1][1]))
11

12 ranks = contribs.reduceByKey(lambda a,b: a+b) \

13 .mapValues(lambda rank: rank * ©.85 + 0.15*(1.0/N))
14 | return ranks
4. Given the above spark application, draw the lineage graph DAG for the RDD ranks on

line 12 when the iteration variable i has a value of 2. Include nodes for all intermediate
RDDs, even if they are unnamed.

How many stages will the above DAG be broken into? Give the number of stages AND
draw stage boundaries on your diagram.

Identify in the above code (by function name AND line number) one instance of:
a. A transformation that results in a wide dependency
b. A transformation that results in a narrow dependency
c. A transformation that may result in a narrow dependency OR a wide dependency
d. An action

How many "jobs" will the above code run if iters has value 10?

What algorithm is the above code an implementation of?




