CSE 4/587
Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

Models and Algorithms
Intro to Modeling Algorithms

- At this point, we have clean data, we have some intuition about it, and we've extracted just the parts of the data we are interested in.
- Now, we can move to modeling to start getting useful information out of our data.
- Two different types of algorithms/models:
 - Optimization algorithms for parameter estimation
 - Machine learning algorithms
Optimization Algorithms

- These algorithms attempt to determine the parameters of the process from which the data is generated.
- Once we have the parameters, we can use the resulting functions to predict new outcomes.
- These algorithms also attempt to quantify the uncertainty; they attempt to give a measure of how good the prediction is.
- Examples: Least squares, Newton's methods, stochastic gradient descent.
Machine Learning Algorithms

● These algorithms attempt to predict, classify, and cluster data
● Don't often make any claims about the degree of uncertainty
● Basis of AI
"Models" vs "Algorithms"?

- Distinction between the two is fuzzy at best
 - Models come from the math side (statistics)...sort of
 - Equations which attempt to model the actual process at hand
 - Come with some measure of uncertainty
 - Algorithms come from the computer science side (ML)...sort of
 - Set of steps required to achieve some result
 - Not designed (generally) to capture the underlying process, just to predict the outcome with the most accuracy
Linear Regression

- Very simple conceptually
- Expresses the relationship between two (or more) variables/attributes
- Assume a linear relationship between an outcome variable (also called dependent variable, response variable or label) and the predictor variable(s) (aka independent variables, features, explanatory variables)
- What if the relationship isn't linear?
 - Linear is a good starting point...
 - ...but we can also look at other relationships after we get the basics down
Specifically, we assume the underlying data is related in the real world by a function of the form: $y = f(x) = \beta_0 + \beta_1 x$
Linear Regression

Specifically, we assume the underlying data is related in the real world by a function of the form: $y = f(x) = \beta_0 + \beta_1 x$

y represents the outcome we are trying to predict.
Linear Regression

- Specifically, we assume the underlying data is related in the real world by a function of the form: $y = f(x) = \beta_0 + \beta_1 x$

 - y represents the outcome we are trying to predict
 - x is our independent variable
Linear Regression

- Specifically, we assume the underlying data is related in the real world by a function of the form: $y = f(x) = \beta_0 + \beta_1 x$

 - y represents the outcome we are trying to predict
 - x is our independent variable
 - β_0 and β_1 are the parameters we are trying to solve for
A few examples

Subscriber Revenue

Take the following table of monthly revenue and subscriber count:

<table>
<thead>
<tr>
<th>Subscribers (x)</th>
<th>Revenue (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>375</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
</tr>
</tbody>
</table>
A few examples

Subscriber Revenue

Take the following table of monthly revenue and subscriber count:

<table>
<thead>
<tr>
<th>Subscribers (x)</th>
<th>Revenue (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>375</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
</tr>
</tbody>
</table>

In this case it's clear that \(y = 25x \).

Notice that in this case, we actually know the truth of the model. The website charges $25 for a subscription.

The model is attempting to capture that.
A few examples

Friends vs Time Spent

Now take the following table:

<table>
<thead>
<tr>
<th>New Friends (x)</th>
<th>Time Spent (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>276</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>136</td>
</tr>
<tr>
<td>10</td>
<td>417</td>
</tr>
</tbody>
</table>

In this case, the data represents the amount of time a user spends on a social media site, compared to the number of new friends they've added this week.

What does our intuition say?

What does the data look like?
A few examples

- The right shows a plot of the dataset where the table came from.
- We do see a generally linear looking relationship.
- This time the model isn't deterministic...but can we estimate it?
A few examples

- We want to capture 2 factors: trend and variation
- Assume a linear relationship \((y = \beta_0 + \beta_1 x)\)
- Now we must “fit” the model - use an algorithm to find the best values of \(\beta_0\) and \(\beta_1\)
A few examples

- We want to capture 2 factors: trend and variation
- Assume a linear relationship \(y = \beta_0 + \beta_1 x \)
- Now we must "fit" the model - use an algorithm to find the best values of \(\beta_0 \) and \(\beta_1 \)
Fitting a Model

- Find the values of β_0 and β_1 that yield the "best" line
- What do we mean by "best"?
 - For now, the line that is on average closest to all the points
 - Closeness measured as vertical distance squared
- Therefore, we want the function that minimizes the sum of the squares for all points
 - This is called, unsurprisingly, least squares estimation
Fitting Our Example

- Running the data through a solver yields $\beta_0 = -32.08$ and $\beta_1 = 45.92$
- How confident are we in this model?
- If we have a new user, with 5 new friends, can we predict how much time they'll spend?
Fitting Our Example

- Running the data through a solver yields $\beta_0 = -32.08$ and $\beta_1 = 45.92$
- How confident are we in this model?
- If we have a new user, with 5 new friends, can we predict how much time they'll spend?

...This, afterall, is the whole goal for modeling in the first place, right?
Next Steps...

- We have an initial model, how can we build on it?
 - Evaluate our model and add error terms
 - Add in more predictors
 - Transform the predictors
Capturing Variability

- With our model so far, predictions are *deterministic*
 - We claim that for a given x, the outcome will be y
 - However, our data has some amount of variability
Capturing Variability

- With our model so far, predictions are *deterministic*
 - We claim that for a given x, the outcome will be y
 - However, our data has some amount of variability

How do we capture this variability?
Capturing Variability

- Add in an error term, ϵ: $y = \beta_0 + \beta_1 x + \epsilon$
 - Referred to as noise
 - Represents relationships you have not accounted for
 - This term captures the difference between our observations, and the true regression line
Capturing Variability

- Add in an error term, ϵ: $y = \beta_0 + \beta_1 x + \epsilon$
 - Referred to as *noise*
 - Represents relationships you have not accounted for
 - This term captures the difference between our observations, and the *true* regression line

Remember, our data is just a trace of the real world. It is incomplete. It has uncertainty. We can only estimate the true regression line. Noise attempts to capture this fact.
Finding Noise

- A common first assumption is that noise follows a normal distribution
 - $\epsilon \sim N(0, \sigma^2)$
 - It then follows that $p(y|x) \sim N(\beta_0 + \beta_1 x, \sigma^2)$
 - We have already found β_0 and β_1
 - σ^2 is the mean squared error (roughly the sum of all of the observed error squared, divided by n-2)
Finding Noise

- A common first assumption is that noise follows a normal distribution
 - $\epsilon \sim N(0, \sigma^2)$
 - It then follows that $p(y|x) \sim N(\beta_0 + \beta_1 x, \sigma^2)$
 - We have already found β_0 and β_1
 - σ^2 is the mean squared error (roughly the sum of all of the observed error squared, divided by n-2)

Our prediction now becomes: Given $x = 5$, we predict y is a random variable with the distribution shown to the right.
Evaluating Our Model

● How can we be certain our model is good?
● Many solvers will compute a few heuristics to help
 ○ R^2 captures the amount of the variance explained by our model
 ■ High R^2 means we've captured most of the variance
 ○ p-values captures the likelihood that our coefficients are "unimportant"
 ■ Low p-values means our coefficients are likely significant
● We can also cross validate ourselves!
 ○ Divide the data into training data and test data.
 ○ Fit the model on the training data to find β and ϵ
 ○ Calculate mean squared error on the test data and see if it's consistent
Extending Our Model

- Add more predictors...
 - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \epsilon$
 - Fit using the package of your choice
 - May even have interaction between predictors

- Transformation on predictors
 - Why did we assume linear...what about $y = \beta_0 + \beta_1 x + \beta_2 x^2 + ...$
 - We can still use linear regression:
 - assume $z = x^2$
 - Now do a linear regression based on z