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Classification

● Classification involves taking a set of unlabeled data points and 
labeling them in some fashion

● Why?
○ To learn from the classification/data
○ To discover patterns
○ Automate some process, ie handwriting recognition



Classification of Classification Algorithms

Classification algorithms can be divided into two broad categories:
● Statistical algorithms

○ Regression
○ Probability based classification: Bayes

● Structural algorithms
○ Rule-based algorithms: if-else, decision trees
○ Distance-based algorithm: similarity, nearest neighbor
○ Neural networks
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Classification of Classification Algorithms

Today we'll review 
Naive Bayes and 

introduce log 
regression
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How can we automatically determine if a message is spam or not?
Any ideas?
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Motivating Example: Spam Classification

Goal: Classify email into spam and not spam (binary classification)

Let's say you get an email saying "You've won the lottery!"

How do we know right away that this email is spam?

Idea: The use of certain words, ie lottery, can indicate an email is spam.



Naive Bayes

Basic Idea: Make a probabilistic model – have many simple rules, and 
aggregate those rules together to provide a probability.



Bayes Law and Probability Theory

Basic Law: P(H | E) = P(E | H) * P(H) / P(E)



Bayes Law - Example

Suppose you know that I work 5 days out of the week.

Also suppose you know that on work days, I never wear flip flops, and on 
non-work days I wear flip flops 70% of the time.

Given this information, if you see me on a random day of the week 
wearing shoes, what is the probability that I had work that day?
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Bayes Law - Example

Basic principle: P(H | E) = P(E | H) * P(H) / P(E)

● What is our hypothesis, H? I went to work today
● What is the evidence, E, that we observed? I'm wearing shoes
● What is P(H)? 5/7 = 0.71
● What is P(E)? 5/7 * 1.0 + 2/7 * 0.3 = 0.8
● What is P(E | H)? 1.0



Bayes Law - Example

Basic principle: P(H | E) = P(E | H) * P(H) / P(E)

● What is our hypothesis, H? I went to work today
● What is the evidence, E, that we observed? I'm wearing shoes
● What is P(H)? 5/7 = 0.71
● What is P(E)? 5/7 * 1.0 + 2/7 * 0.3 = 0.8
● What is P(E | H)? 1.0

Therefore, if you see me in shoes, there is an 88% I went to work today
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Bayes Law - Spam Classification

Given Bayes Law, how can we start classifying emails as spam?

Let's start one word at a time:

P(spam|word) = P(word|spam) * P(spam) / P(word)

Probability that an email is spam 
if it contains a given word Probability that the given 

word appears in an email 
known to be spam

Probability that an email is 
spam

Probability that the given 
word appears in an email



Bayes Law - Spam Classification

We've now boiled our classification problem down to a counting problem:

Given a set of emails that have been classified as spam or not spam (ham):
1. Count number of spam vs ham emails to compute P(spam)
2. Count number of times the given word, ie lottery, appears in emails to compute P(word)
3. Count number of times the given word appears in spam emails to compute 

P(word|spam)



Enron Email Example - DDS Chapter 4

● Input: Enron data set containing employee emails
● A small subset chosen for EDA
● 1500 spam, 3672 ham
● Test word is “meeting”
● Running a simple shell script reveals that there are 16 spam emails 

containing “meeting” and 153 ham emails containing "meeting"
● Output: What is the probability that an email containing "meeting" is 

spam? What is your intuition? Now prove it using Bayes Law…
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Enron Email Example - DDS Chapter 4

P(spam) = 1500 / (1500+3672) = 0.29

P(ham) = 1 - P(spam) = 0.71

P(meeting|spam) = 16/1500 = 0.0106

P(meeting|ham) = 153/3672 = 0.0416

P(meeting) = (16+153) / (1500+3672) = 0.0326

P(spam|meeting) = P(meeting|spam)*P(spam)/P(meeting) = 0.094  (9.4%)
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Putting It All Together - Naive Bayes

So we've counted and computed probabilities for all words in our input

Let's say we have i words. Let x be a vector of size i,

where xj = 1 if the jth word is present in an email, 0 otherwise.

Now how do we compute P(x|spam)?

Once we do this, we can apply Bayes Law to find P(spam|x)
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Naive Bayes

Let c represent the condition that an email is spam

Let xj = 1 if the jth word is in the email

Let θjc be the probability that the jth word is in a spam email

θjc if the jth word is in the email

1-θjc if the jth word is 
not in the email



Example

"meeting": 1% chance of being in a spam email

"money": 10% chance of being in a spam email

"viagra": 4% chance of being in a spam email

"enron": 0% chance of being in a spam email

What is the probability that a spam email contains "meeting" and "money"?

(but not "viagra" or "enron")
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Example

x = [1,1,0,0] θ1c = 0.01 θ2c = 0.10 θ3c = 0.04 θ4c = 0.0

p(x|c) = θ1cθ2c(1 - θ3c)(1 - θ4c)

p(x|c) = 0.01 * 0.1 * 0.96 * 1.0 = 0.00096

There is a 0.09% chance that this exact vector x appears in a spam email



Cleaning it up…

● Multiplying many small probabilities can result in numerical issues 
● A common method for avoiding this is to take the log of both side
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Cleaning it up…

Many of these terms don't depend on the email and can be precomputed
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The Final Formula

Now given p(x|spam) we can use Baye's Law we can compute p(spam|x):

p(spam|x) = p(x|spam) * p(spam) / p(x)

These other two terms are pretty straightforward to 
compute, and p(spam) is independent of the input email



Naive Bayes

A few notes:

● Occurrences of words are considered independent events
○ Don't care how many times a word appears
○ Don't care about combinations of words
○ This is why it's called "naive"
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From the previous formula, θjc is just a ratio of counts: njc / nj

Where njc is the number of times the word appears in a spam email

and nj is the number of times the word appears in any email



Extending our Model: Laplace Smoothing

From the previous formula, θjc is just a ratio of counts: njc / nj

Where njc is the number of times the word appears in a spam email

and nj is the number of times the word appears in any email

This is just an estimate based on our dataset…what if θjc = 1 (or 0)?



Extending our Model: Laplace Smoothing

Laplace Smoothing is a technique to avoid these extreme probabilities

Introduce parameters 𝛼, 𝛽 to our computation of θjc



Extending our Model: Laplace Smoothing

𝛼 and 𝛽 are parameters of your model (just like k for k-NN)



Extending our Model: Laplace Smoothing

𝛼 and 𝛽 are parameters of your model (just like k for k-NN)

Small values for 𝛼, 𝛽 will ensure that the distribution of θ vanishes at 0, 1



Extending our Model: Laplace Smoothing

𝛼 and 𝛽 are parameters of your model (just like k for k-NN)

Small values for 𝛼, 𝛽 will ensure that the distribution of θ vanishes at 0, 1

Larger values will squeeze the distribution even more into the middle



Extending our Model: Laplace Smoothing

𝛼 and 𝛽 are parameters of your model (just like k for k-NN)

Small values for 𝛼, 𝛽 will ensure that the distribution of θ vanishes at 0, 1

Larger values will squeeze the distribution even more into the middle

More data allows you to relax the values of 𝛼, 𝛽



Extending our Model: Multiple Classes

What if we want more than two classes?

Example from DDS: Classifying NYTimes articles based on section

Idea: For a given article, compute the probabilities for each class 
(section), and then classify the article as the one with the highest 

probability
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What if we want more than two classes?

Example from DDS: Classifying NYTimes articles based on section

Idea: For a given article, compute the probabilities for each class 
(section), and then classify the article as the one with the highest 

probability



More on Classifiers

Example Questions and Answers

● "Will someone click on this ad?" 0 or 1 (no or yes)
● "What number is this (image recognition)?" 0, 1, 2, 3, etc
● "What is this news article about?" "Sports"
● "Is this spam?" 0 or 1
● "Is this pill good for headaches?" 0 or 1

Answering these questions can be done with classifiers


