CSE 4/587 Data Intensive Computing

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Dr. Shamshad Parvin shamsadp@buffalo.edu 313 Davis Hall

Evaluating Classifiers

Announcements

- Project Phase 2 released for those that want to start early
 - Must complete Phase 1 first
- Midterm next Wednesday
 - Practice exam will be posted shortly
 - Monday will be a review class
 - Exam will be held in Cooke 121 AND Alumni 97, keep an eye on Piazza

Evaluating Classifiers

- Classifiers automatically label data as belonging to one class or another
- How can we determine the effectiveness of our models?
- Accuracy is sometimes a reasonable first cut...but not always a wise choice...

Pitfalls with using Accuracy

• Take the following decision tree for determining whether a newborn will eventually develop leukemia

5 out of every 1,000 babies named Luke

Example from Data Science from Scratch, Ch 11

Pitfalls with using Accuracy

• Take the following decision tree for determining whether a newborn will eventually develop leukemia

	leukemia	no leukemia	total
"Luke"	70	4,930	5,000
not "Luke"	13,930	981,070	99,500
total	14,000	986,000	1,000,000

Correctly predicts the result ~98% of the time! So this model must be good, right?

Alternatives to Accuracy

- Precision: The percentage of "positive" predictions that were correct
 In the previous example, 70/5000 = 0.014
- Recall: The percentage of "positive" cases we correctly predict
 - \circ In the previous example, 70/14000 = 0.005
- F1 Score: Harmonic mean of precision and recall
 - (2 * precision * recall) / (precision + recall)
 - In the previous example, 0.007

All of these numbers are terrible for this model

k-Nearest Neighbors Demo

Project Phase 2 - Modeling

- 5 different models
- 1 (or 2) must be from outside of class
- Must implement each model well -tune, train, evaluate, etc
- Must explain 3 things:
 - Why you chose the model for your particular problem
 - What work you did to use the model effectively
 - What did you learn from applying your model (both in terms of model effectiveness and what you learned about your data)
- Accuracy/performance is **not** important*, your explanations are

* this assumes you've convinced us you've done an effective job tuning/training your model