CSE 4/587
Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

Evaluating Classifiers
Announcements

● Project Phase 2 released for those that want to start early
 ○ Must complete Phase 1 first

● Midterm next Wednesday
 ○ Practice exam will be posted shortly
 ○ Monday will be a review class
 ○ Exam will be held in Cooke 121 AND Alumni 97, keep an eye on Piazza
Evaluating Classifiers

- Classifiers automatically label data as belonging to one class or another
- How can we determine the effectiveness of our models?
- Accuracy is sometimes a reasonable first cut... but not always a wise choice...
Pitfalls with using Accuracy

- Take the following decision tree for determining whether a newborn will eventually develop leukemia

```
name = Luke?

NO
- Will NOT develop leukemia

YES
- Will develop leukemia
```

<table>
<thead>
<tr>
<th></th>
<th>leukemia</th>
<th>no leukemia</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Luke"</td>
<td>70</td>
<td>4,930</td>
<td>5,000</td>
</tr>
<tr>
<td>not "Luke"</td>
<td>13,930</td>
<td>981,070</td>
<td>99,500</td>
</tr>
<tr>
<td>total</td>
<td>14,000</td>
<td>986,000</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

~1.4% of people will develop leukemia

5 out of every 1,000 babies named Luke

Example from Data Science from Scratch, Ch 11
Pitfalls with using Accuracy

- Take the following decision tree for determining whether a newborn will eventually develop leukemia

```
name = Luke?

NO
Will NOT develop leukemia

YES
Will develop leukemia
```

<table>
<thead>
<tr>
<th></th>
<th>leukemia</th>
<th>no leukemia</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Luke"</td>
<td>70</td>
<td>4,930</td>
<td>5,000</td>
</tr>
<tr>
<td>not "Luke"</td>
<td>13,930</td>
<td>981,070</td>
<td>99,500</td>
</tr>
<tr>
<td>total</td>
<td>14,000</td>
<td>986,000</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Correctly predicts the result ~98% of the time! So this model must be good, right?
Alternatives to Accuracy

- Precision: The percentage of "positive" predictions that were correct
 - In the previous example, 70/5000 = 0.014
- Recall: The percentage of "positive" cases we correctly predict
 - In the previous example, 70/14000 = 0.005
- F1 Score: Harmonic mean of precision and recall
 - \((2 \times \text{precision} \times \text{recall}) / (\text{precision} + \text{recall})\)
 - In the previous example, 0.007

All of these numbers are terrible for this model
k-Nearest Neighbors Demo
Project Phase 2 - Modeling

- 5 different models
- 1 (or 2) must be from outside of class
- Must implement each model well –tune, train, evaluate, etc
- Must explain 3 things:
 - Why you chose the model for your particular problem
 - What work you did to use the model effectively
 - What did you learn from applying your model (both in terms of model effectiveness and what you learned about your data)
- Accuracy/performance is **not** important*, your explanations are

* this assumes you've convinced us you've done an effective job tuning/training your model