
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

CSE 4/587
Data Intensive Computing

Hadoop Distributed File System (HDFS)

Recap from Last Class

● Hadoop Distributed File System (HDFS) is the open source version of
the Google File System (GFS)
○ Allows reliable and efficient storage and access of large write-once, read-

many (WORM) files
○ NameNode acts as a server that manages the filesystem
○ DataNodes store data blocks and serve read/write requests
○ Blocks are replicated to allow for fault tolerance and fast reads

Key Aspects

● The key aspects of Hadoop we will be discussed are:
○ Architecture
○ Robustness
○ Data Organization
○ Communications Protocol
○ API to access services
○ Evaluation of Hadoop
○ Hadoop Ecosystem
○ MapReduce

HDFS Architecture

Name
Node

Data nodeData node Data node Data node

HDFS
Client

Local Disk Local Disk Local Disk Local Disk

HDFS Architecture

The NameNode does not directly call DataNodes. It uses replies to heartbeats to send
instructions to the DataNodes. The instructions include commands to:
● replicate blocks to other nodes;
● remove local block replicas;
● re-register or to shut down the node;
● send an immediate block report

Robustness

Possible Failures

● The primary objective of HDFS is to store data reliably in the presence
of failures

● Three common failures that it must handle are:
○ DataNode failure
○ NameNode failure
○ Network partition

DataNode Failure and Heartbeat

● A crashed DataNode or a network partition can cause a subset of
DataNodes to lose connectivity with the NameNode

● NameNode detects this by the absence of a heartbeat
○ NameNode marks these DataNodes, and does not send requests to them
○ Data registered to the failed DataNode is not available to the HDFS
○ Death of a DataNode may cause some blocks to require more replication

Re-Replication

● Sometimes Blocks in the system may fall below the required
replication factor

● This can occur for a number of reasons
○ A DataNode has become unavailable
○ A replica may become corrupted
○ A hard disk on a DataNode may fail
○ The replication factor may have been increased

Data Integrity

● What if a block of data fetched from a DataNode arrives corrupted
○ Fault in a storage device
○ Network faults
○ Buggy software

● An HDFS client creates a checksum for every block of its file and
stores it in the HDFS namespace

● When the client retrieves the contents of a file it verifies that they
match…if not it must retrieve the block from another replica

MetaData Disk Failure

● FsImage and EditLog are central data structures of HDFS
○ Corruption of these files can cause an entire HDFS instance to become

non-functional.
● A NameNode can be configured to maintain multiple copies of these

files
○ These copies are updated synchronously
○ MetaData is not data intensive

● The NameNode is a potential single point of failure
○ This currently requires manual intervention

Name Node-Single Point of Failure

● 1. Keeping a backup of the name node image & Editlogs on two
locations

Namenode

Local
Storage

NFS

Meta data

Name Node-Single Point of Failure (contd)

● 2. Keeping a secondary Name node

Namenode

Local
Storage

Meta data
(Editlogs+Fsimage)

Secondary
Namenode

Manually brought up in
case of emergency

Name Node-Single Point of Failure (contd)

● 3. Keeping a standby namenode

Namenode

Data Node Data Node

Standby
Name nodes

active

Cluster Rebalancing

● HDFS architecture is compatible with data rebalancing schemes
● A scheme may autometically move data from one DataNode to

another if the free space on a DataNode is falling below a certain
threshold

● A scheme may dynamically create and place additional replicas and
rebalance other data if there is sudden high demand for a particular
file

● These types of rebalancing are not yet implemented

Data Organization

HDFS-Data Block

● HDFS support write-once-read-many with reads at streaming speeds.
● A typical block size is 64MB (or even 128 MB).
● A file is chopped into 64MB chunks and stored.
● Advantages

helps fitting big files into small discs
 leaves less unused space on the disc
Optimizes the transfer
 distributes the load to multiple machines

HDFS –Data Flow

● Client reading data from a HDFS

Ebook :Hadoop the definitive guide by tom white 3rd edition

HDFS –Data Flow
● Client writing data to HDFS

Ebook :Hadoop the definitive guide by tom white 3rd edition

Replication -Pipeline

● When a client is writing data to an HDFS file with a replication factor of three,the
NameNode retrieves a list of DataNodes using a replication target choosing
algorithm.

● It contains the DataNodes that will host a replica of that block.
● The client then writes to the first DataNode, starts receiving the data in portions,

writes each portion to the second DataNode in the list.
● The second DataNode, in turn starts receiving each portion of the data block, writes

that portion to its repository and then flushes that portion to the third DataNode.
● Finally, the third DataNode writes the data to its local repository.

● Thus, the data is pipelined from one DataNode to the next.

Data –Pipeline

[1] Hadoop distributed file system Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler
Yahoo! Sunnyvale, California USA

Staging

● A client request to create a file does not reach Namenode
immediately.

● HDFS client caches the data into a temporary file. When the data
reached a HDFS block size the client contacts the Namenode.

● Namenode inserts the filename into its hierarchy and allocates a data
block for it.

● The Namenode responds to the client with the identity of the
Datanode and the destination of the replicas (Datanodes) for the
block.

Staging (Cont.)

● The client sends a message that the file is closed.
● Namenode proceeds to commit the file for creation operation into the

persistent store.
● If the Namenode dies before file is closed, the file is lost.
● This client side caching is required to avoid network congestion; also

it has precedence is AFS (Andrew file system).

Communication Protocols

The Communications Protocols

 All HDFS communication protocols are layered on top of the TCP/IP
protocol

 A client establishes a connection to a configurable TCP port on the
Namenode machine. It talks ClientProtocol with the Namenode.

 The Datanodes talk to the Namenode using Datanode protocol.
 A remote procedure call (RPC) abstraction wraps both ClientProtocol

and Datanode protocol.
 Namenode is simply a server and never initiates a request; it only

responds to RPC requests issued by DataNodes or clients.

API

FS Shell, Admin, and Browser Interface
● HDFS organizes its data in files and directories
● It provides a commandline interface called FS shell that lets a user interact with

the data in HDFS.
● The syntax of this command set is similar to other shells (e.g. bash, csh) that

users are already familiar with. Here are some sample action/command pairs:

Action Command

Create a directory named /foodir bin/hadoop dfs -mkdir /foodir

Remove a directory named /foodir bin/hadoop fs -rm -R /foodir

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/FileSystemShell.html

FS Shell, Admin, and Browser Interface
• There is also a DFSAdmin interface
• These are commands that are used only by an HDFS

administrator. Here are some sample action/command pairs:

● A browser can be used to view the namespace

Action Command

Put the cluster in Safemode bin/hdfs dfsadmin -safemode enter
Generate a list of DataNodes bin/hdfs dfsadmin -report

Space Reclamation

● When a file is deleted, HDFS moves it to a trash directory for a
configurable amount of time

● A client can request for the file to be recovered during this time
● After the specified time the file is deleted along with replicas, and all

space is reclaimed
● This will also occur automatically if the replication factor is reduced

	 Hadoop Distributed File System (HDFS)
	Recap from Last Class
	Key Aspects
	HDFS Architecture
	HDFS Architecture
	Robustness
	Possible Failures
	DataNode Failure and Heartbeat
	Re-Replication
	Data Integrity
	MetaData Disk Failure
	Name Node-Single Point of Failure
	Name Node-Single Point of Failure (contd)
	Name Node-Single Point of Failure (contd)
	Cluster Rebalancing
	Data Organization
	HDFS-Data Block
	HDFS –Data Flow
	HDFS –Data Flow
	Replication -Pipeline
	Data –Pipeline
	Staging
	Staging (Cont.)
	Communication Protocols
	The Communications Protocols
	API
	FS Shell, Admin, and Browser Interface
	FS Shell, Admin, and Browser Interface
	Space Reclamation

