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Announcements

● HW 1 released due Monday 4/3
○ No late submissions will be accepted



Additional References for Today

Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris 
Dyer, Synthesis Lectures on Human Language Technologies, 2010, Vol. 3, 
No. 1, Pages 1-177, (doi: 10.2200/S00274ED1V01Y201006HLT007).

An online version of this text is also available through UB Libraries since 
UB subscribes to Morgan and Claypool Publishers.

Online version available at: 
http://lintool.github.com/MapReduceAlgorithms/index.html



Dealing with Intermediate Data

● In distributed applications (ie MapReduce), one of the most important 
parts of synchronization is exchange of intermediate results
○ This usually involves communication of data over the network
○ In Hadoop/MR intermediate results are also written to disk

● Network and disk latencies are much more expensive compared to 
most other operation

Reducing the amount of intermediate data translates to better 
performance and efficiency



Local Aggregation

● One way to address the intermediate data problem is to perform local 
aggregation before the data gets written to disk/sent over the network

● Two basic approaches:
○ Combiners
○ In-Mapper Combining



Basic Word-Count Example

class Mapper

  method Map(docid id, doc d)

    for all term t in d do

      emit(t, 1)

class Reducer

  method Reduce(term t, int [c
1
,c

2
,…])

    sum ← 0

    for all int c in [c
1
,c

2
,…] do

      sum ← sum + c

    emit(t, sum)



Combiners

● Process to aggregate the output of Mappers
● Can be thought of as "mini-reducers"
● Must preserve the types of <key, value> pairs

○ Must take the output from Mapper as its input, and output something in 
the same form for the reducers

● It is a completely optional optimization in the eyes of MapReduce
○ It may not be run, it may be run once, it may be run many times
○ Correctness cannot rely on the Combiner



Combiners

● Process to aggregate the output of Mappers
● Can be thought of as "mini-reducers"
● Must preserve the types of <key, value> pairs

○ Must take the output from Mapper as its input, and output something in 
the same form for the reducers

● It is a completely optional optimization in the eyes of MapReduce
○ It may not be run, it may be run once, it may be run many times
○ Correctness cannot rely on the Combiner

For WordCount, we can use the same Reducer class for the Combiner



In-Mapper Combining

Another option is to do local 
aggregation in the Mapper itself

Makes the mapper more complex, 
but…
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      emit(t, 1)
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In-Mapper Combining

Another option is to do local 
aggregation in the Mapper itself

Makes the mapper more complex, 
but…

…also gives direct control over 
aggregation

class Mapper

  method Map(docid id, doc d)

    map ← new AssociativeArray

    for all term t in d do

      map[t] ← map[t] + 1

    for all term t in map do

      emit(t, map[t])

Only emit after we've 
processed the whole input



In-Mapper Combining

What if our mapper is run on multiple <key, value> pair inputs?

We can utilize the initialize and close methods of our mapper!



In-Mapper Combining

What if our mapper is run on multiple <key, value> pair inputs?

We can utilize the initialize and close methods of our mapper!



In-Mapper Combining
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      emit(t, map[t])
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In-Mapper Combining

class Mapper
  method Initialize()
    map ← new AssociativeArray

  method Map(docid id, doc d)    
    for all term t in d do
      map[t] ← map[t] + 1

  method Close()
    for all term t in map do
      emit(t, map[t])

Create the AssociativeArray for intermediate 
aggregation before processing any data

Don't emit and <key, value> pairs until after 
we've seen all of our input



Trade-Offs

Combiner

+ Simple mapper code
+ Let MapReduce manage the 

optimization
- No direct control
- Overhead of generating 

intermediate <k,v> pairs

In-Mapper Aggregation

+ More efficient aggregation
+ Direct control
- Scalability bottleneck requires 

memory management
- No "purity" of functional 

programming
- May introduce ordering bugs



Correctness with Local Aggregation

Example: <key, value> pairs associate a string with a number, we want to 
compute the mean value for each key.

class Mapper

  method Map(str s, int i)

    emit(s, i)

class Reducer

  method Reduce(str s, int [i
1
,i

2
,...])

    sum ← 0; count ← 0

    for all int i in [i
1
,i

2
,...] do

      sum ← sum + i

      count ← count + 1

    avg = sum / count

    emit(t, avg)



Correctness with Local Aggregation

Example: <key, value> pairs associate a string with a number, we want to 
compute the mean value for each key.

class Mapper

  method Map(str s, int i)

    emit(s, i)

class Reducer

  method Reduce(str s, int [i
1
,i

2
,...])

    sum ← 0; count ← 0

    for all int i in [i
1
,i

2
,...] do

      sum ← sum + i

      count ← count + 1

    avg = sum / count

    emit(t, avg)
Can this reducer also be 

the combiner?



Correctness with Local Aggregation

Observation: Mean(1,2,3,4,5) ≄ Mean(Mean(1,2),Mean(3,4,5))

Count was associative and commutative, Mean is not!

How can we write a combiner to do local aggregation?



Combiner Attempt #1

class Combiner

  method Combine(str s, int [i
1
,i

2
,...])

    sum ← 0; count ← 0;

    for all int i in [i
1
,i

2
,...] do

      sum ← sum + i

      count ← count + 1

    emit(s, (sum, count)) // Emit a pair



Combiner Attempt #1

class Combiner

  method Combine(str s, int [i
1
,i

2
,...])

    sum ← 0; count ← 0;

    for all int i in [i
1
,i

2
,...] do

      sum ← sum + i

      count ← count + 1

    emit(s, (sum, count)) // Emit a pair

Will this work for local aggregation?



Combiners

● Process to aggregate the output of Mappers
● Can be thought of as "mini-reducers"
● Must preserve the types of <key, value> pairs

○ Must take the output from Mapper as its input, and output something in 
the same form for the reducers

● It is a completely optional optimization in the eyes of MapReduce
○ It may not be run, it may be run once, it may be run many times
○ Correctness cannot rely on the Combiner



Combiner Attempt #2

class Mapper
  method Map(str s, int i)
    emit(s, (i, 1))

class Combiner
  method Combine(str s, pair [(s

1
,c

1
),...])

    sum ← 0; count ← 0
    for all pair (s,c) in [(s

1
,c

1
),...] do

      sum ← sum + s
      count ← count + c
    emit(t, (sum, count))

class Reducer
  method Reduce(str s, pair [(s

1
,c

1
),...])

    sum ← 0; count ← 0
    for all pair (s,c) in [(s

1
,c

1
),...] do

      sum ← sum + s
      count ← count + c
    avg = sum / count
    emit(t, avg)



Combiner Attempt #2

class Mapper
  method Map(str s, int i)
    emit(s, (i, 1))

class Combiner
  method Combine(str s, pair [(s

1
,c

1
),...])

    sum ← 0; count ← 0
    for all pair (s,c) in [(s

1
,c

1
),...] do

      sum ← sum + s
      count ← count + c
    emit(t, (sum, count))

class Reducer
  method Reduce(str s, pair [(s

1
,c

1
),...])

    sum ← 0; count ← 0
    for all pair (s,c) in [(s

1
,c

1
),...] do

      sum ← sum + s
      count ← count + c
    avg = sum / count
    emit(t, avg)

Outputs pairs

Inputs AND outputs 
are pairs

Inputs are pairs



In-Mapper Aggregation

class Mapper

  method Initialize()

    sumMap ← new AssociativeArray

    countMap ← new AssociativeArray

  method Map(str s, int i)

    sumMap[s] ← sumMap[s] + i

    countMap[s] ← countMap[s] + 1

  method Close()

    for all key in sumMap do

      emit(key, (sumMap[key], countMap[key]))



Word Co-Occurrence

● Word Co-Occurrence counts the number of times pairs of words occur 
in the same context, ie a sentence

● Involves constructing an NxN matrix, M, where N is the total number 
of words in the vocabulary
○ Mij is the number of times words wi and wj occurred in the same context
○ Very simple to compute…if the matrix fits in memory



Word Co-Occurrence

Can come up in a number of different domains, not just in text processing

Some Examples:
● Information retrieval, NLP, text mining, etc
● Co-Occurrence in consumer purchases (can help with inventory mgmt)
● Finding associations between recurring financial transactions



Word Co-Occurrence - Pairs Method

class Mapper

  method Map(docid id, doc d)

    for all w in d do

      for all u in Neighbors(w) do

        emit((w,u), 1)

class Reducer

  method Reduce(pair p, int[] cnts)

    sum ← 0

    for all c in cnts do

      sum ← s + c

    emit(p, sum)
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The key in our <key,value> pair is a pair of 

words. Represents a single entry in our 
co-occurrence matrix.



Word Co-Occurrence - Pairs Method

class Mapper

  method Map(docid id, doc d)

    for all w in d do

      for all u in Neighbors(w) do

        emit((w,u), 1)

class Reducer

  method Reduce(pair p, int[] cnts)

    sum ← 0

    for all c in cnts do

      sum ← s + c

    emit(p, sum)
The key in our <key,value> pair is a pair of 

words. Represents a single entry in our 
co-occurrence matrix.

How many possible keys are there? Any issues with this method?



Word Co-Occurrence - Stripes Method

What else could we use as a key?

Could we use a single word as a key?

If so, what would be the value?
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Word Co-Occurence - Stripes Method

class Mapper

  method Map(docid id, doc d)

    for all w in d do

      map ← new AssociativeArray

      for all u in Neighbors(w) do

        map[u] ← map[u] + 1

      emit(w, map)

class Reducer

  method Reduce(str w, stripes)

    map ← new AssociativeArray

    for all s in stripes do

      Sum(map, s)

    emit(w, map)
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Build and emit a map containing the 
counts of all neighbors of w



Word Co-Occurence - Stripes Method

class Mapper

  method Map(docid id, doc d)

    for all w in d do

      map ← new AssociativeArray

      for all u in Neighbors(w) do

        map[u] ← map[u] + 1

      emit(w, map)

class Reducer

  method Reduce(str w, stripes)

    map ← new AssociativeArray

    for all s in stripes do

      Sum(map, s)

    emit(w, map)

Build and emit a map containing the 
counts of all neighbors of w

Combine all maps for w into one map 
and output it



Analysis of Stripes

+ Stripes generate far fewer <key, value> pairs
+ Stripes are much more compact (the pairs approach duplicates the 

left word in the pair for every pair)
+ Fewer and shorter keys means less sorting
+ Better for local aggregation
- Values are larger and more complex with more serialization overhead
- Scalability concerns similar to In-Mapper combining (memory 

overflow)



Pairs vs Stripes in General

In a pairs approach, each key corresponds to a single entry of our matrix

In a stripes approach, each key corresponds to a single row of our matrix

We can also aim to find a 
middle ground somewhere 
between the two extremes

Single pair

Single stripe

Happy medium?



Local Aggregation

● Both combiners and In-Mapper combining can be used with either the 
pairs or stripes method
○ The pairs method has less opportunity for combining (it is less likely to 

find many occurrences of a specific pair of words)
○ The stripes method may run into scalability issues as the maps get larger



Performance Study

Performance study from 
Lin and Dyer Chapter 3



Relative Co-Occurrence Problem

● Individual words occur with different frequency.
○ In English, we expect to come across "the" much more often than "zebra"

● Using absolute counts can be deceiving – more frequent words may 
have a higher co-occurrence count simply due to being more common
○ "the" and "stripe" may have more co-occurrences than "stripe" and "zebra" 

simply because "the" is way more common than "zebra"

How can we determine the "relative" co-occurrence?



Relative Co-Occurrence Problem



Relative Co-Occurrence Problem

Number of times wi co-occurs with wj



Relative Co-Occurrence Problem

Number of times wi co-occurs with wj

Number of times wi co-occurs with anything else



Relative Co-Occurrence Problem

Number of times wi co-occurs with wj

Number of times wi co-occurs with anything else
This is called the marginal



Relative Co-Occurrence Problem

● Computing relative co-occurrence with stripes is trivial
○ Reducer can sum all counts for a particular key to get the marginal



Relative Co-Occurrence Problem

● Computing relative co-occurrence with stripes is trivial
○ Reducer can sum all counts for a particular key to get the marginal

Can we compute relative co-occurrence with the pairs approach?



Reducer-Side Aggregation

● The reducer in the pairs method reduces single pairs at a time
○ Just having counts for a single pair is not enough to compute relative 

co-occurrence, we can't compute the marginal



Reducer-Side Aggregation

● The reducer in the pairs method reduces single pairs at a time
○ Just having counts for a single pair is not enough to compute relative 

co-occurrence, we can't compute the marginal
● Just like the Mapper, our Reducers can preserve state across calls to 

Reduce(...), by using Initialize() and Close()
○ To do this we need a few modifications…



Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in 
order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), …
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Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in 
order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), …

1. We need to ensure that all pairs starting with dog go to the same 
reducer.

2. We need to be able to tell when we have reduced all the dog pairs.

This can be accomplished with a custom partitioner/sort order



Reducer-Side Aggregation

(dog, aardvark),
(dog, apple),
(dog, banana),
(dog, fur),
    …
(dog, zebra),
(door, open),
    …



Reducer-Side Aggregation

(dog, aardvark),
(dog, apple),
(dog, banana),
(dog, fur),
    …
(dog, zebra),
(door, open),
    … If we sort our keys by the first word, we know as soon as 

we encounter (door, open) we are done with all of the 
dog keys.



Reducer-Side Aggregation

class Reducer
  method Initialize()
    currWord ← ""
    map ← new AssociativeArray
  method Reduce(pair p, int[] cnts)
    if pair.first != currWord then
      computeAndEmitRelative()
      currWord ← pair.first
      map ← new AssociativeArray
    for all c in cnts do
      map[pair.second] = map[pair.second] + c



Reducer-Side Aggregation

class Reducer
  method Initialize()
    currWord ← ""
    map ← new AssociativeArray
  method Reduce(pair p, int[] cnts)
    if pair.first != currWord then
      computeAndEmitRelative()
      currWord ← pair.first
      map ← new AssociativeArray
    for all c in cnts do
      map[pair.second] = map[pair.second] + c

Since we sorted based on the first word in 
the pair, we can assume all keys with the 

same first word will appear in a row…once we 
encounter a different word, we can output the 

result for our previous word



Reducer-Side Aggregation

class Reducer
  method Initialize()
    currWord ← ""
    map ← new AssociativeArray
  method Reduce(pair p, int[] cnts)
    if pair.first != currWord then
      computeAndEmitRelative()
      currWord ← pair.first
      map ← new AssociativeArray
    for all c in cnts do
      map[pair.second] = map[pair.second] + c

The map holds the total number of 
co-occurrences with our current word



Reducer-Side Aggregation

class Reducer

  method computeAndEmitRelative()

    marginal ← 0

    for all key in map do

      marginal ← marginal + map[key]

    for all key in map do

      N ← map[key]

      relative = N / (marginal - N)

      emit(currWord, relative)



Reducer-Side Aggregation

class Reducer

  method computeAndEmitRelative()

    marginal ← 0

    for all key in map do

      marginal ← marginal + map[key]

    for all key in map do

      N ← map[key]

      relative = N / (marginal - N)

      emit(currWord, relative)

Compute marginal across all words 
co-occurring with our current word



Reducer-Side Aggregation

class Reducer

  method computeAndEmitRelative()

    marginal ← 0

    for all key in map do

      marginal ← marginal + map[key]

    for all key in map do

      N ← map[key]

      relative = N / (marginal - N)

      emit(currWord, relative)

Compute relative co-occurrence for all words



Scalability

Observation: This method has the same scalability issues as the stripes 
method In-Mapper aggregation…as our vocabulary gets bigger, the map 

may not fit in memory

…but we need it to compute the marginal…or do we?



Order Inversion

● Can we compute the marginal before we compute the individual 
co-occurrences? 
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● Can we compute the marginal before we compute the individual 
co-occurrences? YES!

● Emit to a special pair that contains total occurrences of a word
○ ie: (dog, *) would count co-occurrences of dog with any word
○ In our sorting, make sure this pair comes before all other dog pairs

<(dog,*),[10,2,147]>, <(dog, aardvark),[2,1])>, …, <(dog, zebra), [3,1,1]>, <(cat,*),[31,491,6]>, …



Order Inversion

● Can we compute the marginal before we compute the individual 
co-occurrences? YES!

● Emit to a special pair that contains total occurrences of a word
○ ie: (dog, *) would count co-occurrences of dog with any word
○ In our sorting, make sure this pair comes before all other dog pairs

<(dog,*),[10,2,147]>, <(dog, aardvark),[2,1])>, …, <(dog, zebra), [3,1,1]>, <(cat,*),[31,491,6]>, …

This is the first "dog" pair our reducer will encounter, and can be used to compute the marginal for dog 
before we compute the individual co-occurrences for dog. This is called order inversion.



Word Co-Occurrence - Pairs Method

class Mapper

  method Map(docid id, doc d)

    for all w in d do

      for all u in Neighbors(w) do

        emit((w,u), 1)

        emit((w,*), 1)

class Reducer
  method Initialize()
    marginal ← 0
  method Reduce(pair p, int[] cnts)
    N ← 0
    for all c in cnts do
      N ← N + c
    if p.second == * then
      marginal ← N
    else
      emit(p, N / (marginal - N))



Word Co-Occurrence - Pairs Method

class Mapper

  method Map(docid id, doc d)

    for all w in d do

      for all u in Neighbors(w) do

        emit((w,u), 1)

        emit((w,*), 1)

class Reducer
  method Initialize()
    marginal ← 0
  method Reduce(pair p, int[] cnts)
    N ← 0
    for all c in cnts do
      N ← N + c
    if p.second == * then
      marginal ← N
    else
      emit(p, N / (marginal - N))

Special pair can be used to compute the marginal 
and indicates we are starting a new word in the 
reducer


