
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

CSE 4/587
Data Intensive Computing

Word Co-Occurrence

Announcements

● HW 1 released due Monday 4/3
○ No late submissions will be accepted

Additional References for Today

Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris
Dyer, Synthesis Lectures on Human Language Technologies, 2010, Vol. 3,
No. 1, Pages 1-177, (doi: 10.2200/S00274ED1V01Y201006HLT007).

An online version of this text is also available through UB Libraries since
UB subscribes to Morgan and Claypool Publishers.

Online version available at:
http://lintool.github.com/MapReduceAlgorithms/index.html

Dealing with Intermediate Data

● In distributed applications (ie MapReduce), one of the most important
parts of synchronization is exchange of intermediate results
○ This usually involves communication of data over the network
○ In Hadoop/MR intermediate results are also written to disk

● Network and disk latencies are much more expensive compared to
most other operation

Reducing the amount of intermediate data translates to better
performance and efficiency

Local Aggregation

● One way to address the intermediate data problem is to perform local
aggregation before the data gets written to disk/sent over the network

● Two basic approaches:
○ Combiners
○ In-Mapper Combining

Basic Word-Count Example

class Mapper

 method Map(docid id, doc d)

 for all term t in d do

 emit(t, 1)

class Reducer

 method Reduce(term t, int [c
1
,c

2
,…])

 sum ← 0

 for all int c in [c
1
,c

2
,…] do

 sum ← sum + c

 emit(t, sum)

Combiners

● Process to aggregate the output of Mappers
● Can be thought of as "mini-reducers"
● Must preserve the types of <key, value> pairs

○ Must take the output from Mapper as its input, and output something in
the same form for the reducers

● It is a completely optional optimization in the eyes of MapReduce
○ It may not be run, it may be run once, it may be run many times
○ Correctness cannot rely on the Combiner

Combiners

● Process to aggregate the output of Mappers
● Can be thought of as "mini-reducers"
● Must preserve the types of <key, value> pairs

○ Must take the output from Mapper as its input, and output something in
the same form for the reducers

● It is a completely optional optimization in the eyes of MapReduce
○ It may not be run, it may be run once, it may be run many times
○ Correctness cannot rely on the Combiner

For WordCount, we can use the same Reducer class for the Combiner

In-Mapper Combining

Another option is to do local
aggregation in the Mapper itself

Makes the mapper more complex,
but…

class Mapper

 method Map(docid id, doc d)

 for all term t in d do

 emit(t, 1)

In-Mapper Combining

Another option is to do local
aggregation in the Mapper itself

Makes the mapper more complex,
but…

…also gives direct control
over aggregation

class Mapper

 method Map(docid id, doc d)

 for all term t in d do

 emit(t, 1)

In-Mapper Combining

Another option is to do local
aggregation in the Mapper itself

Makes the mapper more complex,
but…

…also gives direct control over
aggregation

class Mapper

 method Map(docid id, doc d)

 map ← new AssociativeArray

 for all term t in d do

 map[t] ← map[t] + 1

 for all term t in map do

 emit(t, map[t])

In-Mapper Combining

Another option is to do local
aggregation in the Mapper itself

Makes the mapper more complex,
but…

…also gives direct control over
aggregation

class Mapper

 method Map(docid id, doc d)

 map ← new AssociativeArray

 for all term t in d do

 map[t] ← map[t] + 1

 for all term t in map do

 emit(t, map[t])

Store intermediate result

In-Mapper Combining

Another option is to do local
aggregation in the Mapper itself

Makes the mapper more complex,
but…

…also gives direct control over
aggregation

class Mapper

 method Map(docid id, doc d)

 map ← new AssociativeArray

 for all term t in d do

 map[t] ← map[t] + 1

 for all term t in map do

 emit(t, map[t])

Only emit after we've
processed the whole input

In-Mapper Combining

What if our mapper is run on multiple <key, value> pair inputs?

We can utilize the initialize and close methods of our mapper!

In-Mapper Combining

What if our mapper is run on multiple <key, value> pair inputs?

We can utilize the initialize and close methods of our mapper!

In-Mapper Combining

class Mapper
 method Initialize()
 map ← new AssociativeArray

 method Map(docid id, doc d)
 for all term t in d do
 map[t] ← map[t] + 1

 method Close()
 for all term t in map do
 emit(t, map[t])

In-Mapper Combining

class Mapper
 method Initialize()
 map ← new AssociativeArray

 method Map(docid id, doc d)
 for all term t in d do
 map[t] ← map[t] + 1

 method Close()
 for all term t in map do
 emit(t, map[t])

Create the AssociativeArray for intermediate
aggregation before processing any data

In-Mapper Combining

class Mapper
 method Initialize()
 map ← new AssociativeArray

 method Map(docid id, doc d)
 for all term t in d do
 map[t] ← map[t] + 1

 method Close()
 for all term t in map do
 emit(t, map[t])

Create the AssociativeArray for intermediate
aggregation before processing any data

Don't emit and <key, value> pairs until after
we've seen all of our input

Trade-Offs

Combiner

+ Simple mapper code
+ Let MapReduce manage the

optimization
- No direct control
- Overhead of generating

intermediate <k,v> pairs

In-Mapper Aggregation

+ More efficient aggregation
+ Direct control
- Scalability bottleneck requires

memory management
- No "purity" of functional

programming
- May introduce ordering bugs

Correctness with Local Aggregation

Example: <key, value> pairs associate a string with a number, we want to
compute the mean value for each key.

class Mapper

 method Map(str s, int i)

 emit(s, i)

class Reducer

 method Reduce(str s, int [i
1
,i

2
,...])

 sum ← 0; count ← 0

 for all int i in [i
1
,i

2
,...] do

 sum ← sum + i

 count ← count + 1

 avg = sum / count

 emit(t, avg)

Correctness with Local Aggregation

Example: <key, value> pairs associate a string with a number, we want to
compute the mean value for each key.

class Mapper

 method Map(str s, int i)

 emit(s, i)

class Reducer

 method Reduce(str s, int [i
1
,i

2
,...])

 sum ← 0; count ← 0

 for all int i in [i
1
,i

2
,...] do

 sum ← sum + i

 count ← count + 1

 avg = sum / count

 emit(t, avg)
Can this reducer also be

the combiner?

Correctness with Local Aggregation

Observation: Mean(1,2,3,4,5) ≄ Mean(Mean(1,2),Mean(3,4,5))

Count was associative and commutative, Mean is not!

How can we write a combiner to do local aggregation?

Combiner Attempt #1

class Combiner

 method Combine(str s, int [i
1
,i

2
,...])

 sum ← 0; count ← 0;

 for all int i in [i
1
,i

2
,...] do

 sum ← sum + i

 count ← count + 1

 emit(s, (sum, count)) // Emit a pair

Combiner Attempt #1

class Combiner

 method Combine(str s, int [i
1
,i

2
,...])

 sum ← 0; count ← 0;

 for all int i in [i
1
,i

2
,...] do

 sum ← sum + i

 count ← count + 1

 emit(s, (sum, count)) // Emit a pair

Will this work for local aggregation?

Combiners

● Process to aggregate the output of Mappers
● Can be thought of as "mini-reducers"
● Must preserve the types of <key, value> pairs

○ Must take the output from Mapper as its input, and output something in
the same form for the reducers

● It is a completely optional optimization in the eyes of MapReduce
○ It may not be run, it may be run once, it may be run many times
○ Correctness cannot rely on the Combiner

Combiner Attempt #2

class Mapper
 method Map(str s, int i)
 emit(s, (i, 1))

class Combiner
 method Combine(str s, pair [(s

1
,c

1
),...])

 sum ← 0; count ← 0
 for all pair (s,c) in [(s

1
,c

1
),...] do

 sum ← sum + s
 count ← count + c
 emit(t, (sum, count))

class Reducer
 method Reduce(str s, pair [(s

1
,c

1
),...])

 sum ← 0; count ← 0
 for all pair (s,c) in [(s

1
,c

1
),...] do

 sum ← sum + s
 count ← count + c
 avg = sum / count
 emit(t, avg)

Combiner Attempt #2

class Mapper
 method Map(str s, int i)
 emit(s, (i, 1))

class Combiner
 method Combine(str s, pair [(s

1
,c

1
),...])

 sum ← 0; count ← 0
 for all pair (s,c) in [(s

1
,c

1
),...] do

 sum ← sum + s
 count ← count + c
 emit(t, (sum, count))

class Reducer
 method Reduce(str s, pair [(s

1
,c

1
),...])

 sum ← 0; count ← 0
 for all pair (s,c) in [(s

1
,c

1
),...] do

 sum ← sum + s
 count ← count + c
 avg = sum / count
 emit(t, avg)

Outputs pairs

Inputs AND outputs
are pairs

Inputs are pairs

In-Mapper Aggregation

class Mapper

 method Initialize()

 sumMap ← new AssociativeArray

 countMap ← new AssociativeArray

 method Map(str s, int i)

 sumMap[s] ← sumMap[s] + i

 countMap[s] ← countMap[s] + 1

 method Close()

 for all key in sumMap do

 emit(key, (sumMap[key], countMap[key]))

Word Co-Occurrence

● Word Co-Occurrence counts the number of times pairs of words occur
in the same context, ie a sentence

● Involves constructing an NxN matrix, M, where N is the total number
of words in the vocabulary
○ Mij is the number of times words wi and wj occurred in the same context
○ Very simple to compute…if the matrix fits in memory

Word Co-Occurrence

Can come up in a number of different domains, not just in text processing

Some Examples:
● Information retrieval, NLP, text mining, etc
● Co-Occurrence in consumer purchases (can help with inventory mgmt)
● Finding associations between recurring financial transactions

Word Co-Occurrence - Pairs Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 for all u in Neighbors(w) do

 emit((w,u), 1)

class Reducer

 method Reduce(pair p, int[] cnts)

 sum ← 0

 for all c in cnts do

 sum ← s + c

 emit(p, sum)

Word Co-Occurrence - Pairs Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 for all u in Neighbors(w) do

 emit((w,u), 1)

class Reducer

 method Reduce(pair p, int[] cnts)

 sum ← 0

 for all c in cnts do

 sum ← s + c

 emit(p, sum)
The key in our <key,value> pair is a pair of

words. Represents a single entry in our
co-occurrence matrix.

Word Co-Occurrence - Pairs Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 for all u in Neighbors(w) do

 emit((w,u), 1)

class Reducer

 method Reduce(pair p, int[] cnts)

 sum ← 0

 for all c in cnts do

 sum ← s + c

 emit(p, sum)
The key in our <key,value> pair is a pair of

words. Represents a single entry in our
co-occurrence matrix.

How many possible keys are there? Any issues with this method?

Word Co-Occurrence - Stripes Method

What else could we use as a key?

Could we use a single word as a key?

If so, what would be the value?

Word Co-Occurrence - Stripes Method

What else could we use as a key?

Could we use a single word as a key?

If so, what would be the value?

Word Co-Occurrence - Stripes Method

What else could we use as a key?

Could we use a single word as a key?

If so, what would be the value?

Word Co-Occurence - Stripes Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 map ← new AssociativeArray

 for all u in Neighbors(w) do

 map[u] ← map[u] + 1

 emit(w, map)

class Reducer

 method Reduce(str w, stripes)

 map ← new AssociativeArray

 for all s in stripes do

 Sum(map, s)

 emit(w, map)

Word Co-Occurence - Stripes Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 map ← new AssociativeArray

 for all u in Neighbors(w) do

 map[u] ← map[u] + 1

 emit(w, map)

class Reducer

 method Reduce(str w, stripes)

 map ← new AssociativeArray

 for all s in stripes do

 Sum(map, s)

 emit(w, map)

Build and emit a map containing the
counts of all neighbors of w

Word Co-Occurence - Stripes Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 map ← new AssociativeArray

 for all u in Neighbors(w) do

 map[u] ← map[u] + 1

 emit(w, map)

class Reducer

 method Reduce(str w, stripes)

 map ← new AssociativeArray

 for all s in stripes do

 Sum(map, s)

 emit(w, map)

Build and emit a map containing the
counts of all neighbors of w

Combine all maps for w into one map
and output it

Analysis of Stripes

+ Stripes generate far fewer <key, value> pairs
+ Stripes are much more compact (the pairs approach duplicates the

left word in the pair for every pair)
+ Fewer and shorter keys means less sorting
+ Better for local aggregation
- Values are larger and more complex with more serialization overhead
- Scalability concerns similar to In-Mapper combining (memory

overflow)

Pairs vs Stripes in General

In a pairs approach, each key corresponds to a single entry of our matrix

In a stripes approach, each key corresponds to a single row of our matrix

We can also aim to find a
middle ground somewhere
between the two extremes

Single pair

Single stripe

Happy medium?

Local Aggregation

● Both combiners and In-Mapper combining can be used with either the
pairs or stripes method
○ The pairs method has less opportunity for combining (it is less likely to

find many occurrences of a specific pair of words)
○ The stripes method may run into scalability issues as the maps get larger

Performance Study

Performance study from
Lin and Dyer Chapter 3

Relative Co-Occurrence Problem

● Individual words occur with different frequency.
○ In English, we expect to come across "the" much more often than "zebra"

● Using absolute counts can be deceiving – more frequent words may
have a higher co-occurrence count simply due to being more common
○ "the" and "stripe" may have more co-occurrences than "stripe" and "zebra"

simply because "the" is way more common than "zebra"

How can we determine the "relative" co-occurrence?

Relative Co-Occurrence Problem

Relative Co-Occurrence Problem

Number of times wi co-occurs with wj

Relative Co-Occurrence Problem

Number of times wi co-occurs with wj

Number of times wi co-occurs with anything else

Relative Co-Occurrence Problem

Number of times wi co-occurs with wj

Number of times wi co-occurs with anything else
This is called the marginal

Relative Co-Occurrence Problem

● Computing relative co-occurrence with stripes is trivial
○ Reducer can sum all counts for a particular key to get the marginal

Relative Co-Occurrence Problem

● Computing relative co-occurrence with stripes is trivial
○ Reducer can sum all counts for a particular key to get the marginal

Can we compute relative co-occurrence with the pairs approach?

Reducer-Side Aggregation

● The reducer in the pairs method reduces single pairs at a time
○ Just having counts for a single pair is not enough to compute relative

co-occurrence, we can't compute the marginal

Reducer-Side Aggregation

● The reducer in the pairs method reduces single pairs at a time
○ Just having counts for a single pair is not enough to compute relative

co-occurrence, we can't compute the marginal
● Just like the Mapper, our Reducers can preserve state across calls to

Reduce(...), by using Initialize() and Close()
○ To do this we need a few modifications…

Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in
order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), …

Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in
order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), …

1. We need to ensure that all pairs starting with dog go to the same
reducer.

Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in
order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), …

1. We need to ensure that all pairs starting with dog go to the same
reducer.

2. We need to be able to tell when we have reduced all the dog pairs.

Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in
order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), …

1. We need to ensure that all pairs starting with dog go to the same
reducer.

2. We need to be able to tell when we have reduced all the dog pairs.

This can be accomplished with a custom partitioner/sort order

Reducer-Side Aggregation

(dog, aardvark),
(dog, apple),
(dog, banana),
(dog, fur),
 …
(dog, zebra),
(door, open),
 …

Reducer-Side Aggregation

(dog, aardvark),
(dog, apple),
(dog, banana),
(dog, fur),
 …
(dog, zebra),
(door, open),
 … If we sort our keys by the first word, we know as soon as

we encounter (door, open) we are done with all of the
dog keys.

Reducer-Side Aggregation

class Reducer
 method Initialize()
 currWord ← ""
 map ← new AssociativeArray
 method Reduce(pair p, int[] cnts)
 if pair.first != currWord then
 computeAndEmitRelative()
 currWord ← pair.first
 map ← new AssociativeArray
 for all c in cnts do
 map[pair.second] = map[pair.second] + c

Reducer-Side Aggregation

class Reducer
 method Initialize()
 currWord ← ""
 map ← new AssociativeArray
 method Reduce(pair p, int[] cnts)
 if pair.first != currWord then
 computeAndEmitRelative()
 currWord ← pair.first
 map ← new AssociativeArray
 for all c in cnts do
 map[pair.second] = map[pair.second] + c

Since we sorted based on the first word in
the pair, we can assume all keys with the

same first word will appear in a row…once we
encounter a different word, we can output the

result for our previous word

Reducer-Side Aggregation

class Reducer
 method Initialize()
 currWord ← ""
 map ← new AssociativeArray
 method Reduce(pair p, int[] cnts)
 if pair.first != currWord then
 computeAndEmitRelative()
 currWord ← pair.first
 map ← new AssociativeArray
 for all c in cnts do
 map[pair.second] = map[pair.second] + c

The map holds the total number of
co-occurrences with our current word

Reducer-Side Aggregation

class Reducer

 method computeAndEmitRelative()

 marginal ← 0

 for all key in map do

 marginal ← marginal + map[key]

 for all key in map do

 N ← map[key]

 relative = N / (marginal - N)

 emit(currWord, relative)

Reducer-Side Aggregation

class Reducer

 method computeAndEmitRelative()

 marginal ← 0

 for all key in map do

 marginal ← marginal + map[key]

 for all key in map do

 N ← map[key]

 relative = N / (marginal - N)

 emit(currWord, relative)

Compute marginal across all words
co-occurring with our current word

Reducer-Side Aggregation

class Reducer

 method computeAndEmitRelative()

 marginal ← 0

 for all key in map do

 marginal ← marginal + map[key]

 for all key in map do

 N ← map[key]

 relative = N / (marginal - N)

 emit(currWord, relative)

Compute relative co-occurrence for all words

Scalability

Observation: This method has the same scalability issues as the stripes
method In-Mapper aggregation…as our vocabulary gets bigger, the map

may not fit in memory

…but we need it to compute the marginal…or do we?

Order Inversion

● Can we compute the marginal before we compute the individual
co-occurrences?

Order Inversion

● Can we compute the marginal before we compute the individual
co-occurrences? YES!

● Emit to a special pair that contains total occurrences of a word
○ ie: (dog, *) would count co-occurrences of dog with any word
○ In our sorting, make sure this pair comes before all other dog pairs

<(dog,*),[10,2,147]>, <(dog, aardvark),[2,1])>, …, <(dog, zebra), [3,1,1]>, <(cat,*),[31,491,6]>, …

Order Inversion

● Can we compute the marginal before we compute the individual
co-occurrences? YES!

● Emit to a special pair that contains total occurrences of a word
○ ie: (dog, *) would count co-occurrences of dog with any word
○ In our sorting, make sure this pair comes before all other dog pairs

<(dog,*),[10,2,147]>, <(dog, aardvark),[2,1])>, …, <(dog, zebra), [3,1,1]>, <(cat,*),[31,491,6]>, …

This is the first "dog" pair our reducer will encounter, and can be used to compute the marginal for dog
before we compute the individual co-occurrences for dog. This is called order inversion.

Word Co-Occurrence - Pairs Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 for all u in Neighbors(w) do

 emit((w,u), 1)

 emit((w,*), 1)

class Reducer
 method Initialize()
 marginal ← 0
 method Reduce(pair p, int[] cnts)
 N ← 0
 for all c in cnts do
 N ← N + c
 if p.second == * then
 marginal ← N
 else
 emit(p, N / (marginal - N))

Word Co-Occurrence - Pairs Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 for all u in Neighbors(w) do

 emit((w,u), 1)

 emit((w,*), 1)

class Reducer
 method Initialize()
 marginal ← 0
 method Reduce(pair p, int[] cnts)
 N ← 0
 for all c in cnts do
 N ← N + c
 if p.second == * then
 marginal ← N
 else
 emit(p, N / (marginal - N))

Special pair can be used to compute the marginal
and indicates we are starting a new word in the
reducer

