CSE 4/587

Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

MapReduce and NGS

Announcements

e Midterm #2 on Wednesday

o Same logistics as last time: if you were in Alumni 97 for Midterm #1 you
will be there for Midterm #2

o Topics are Hadoop and MapReduce (everything we've covered since
Midterm #1)

o Monday will be a review

Recap

e Live demo of MapReduce execution on local instance of Hadoop
o Viewed/manipulated our local Hadoop instance via browser and
command-line
o Defined a Mapper, Reducer, and main for a simple word count problem
o Executed our job and updated our code based on observations
e Very simple code — scales up without change

e The execution/parallelization details are handled by Hadoop

Where is MR Actually Used?

Google uses it (we think) for wordcount, adwords, pagerank, indexing
Simple algorithms such as grep, text-indexing, reverse indexing
Bayesian classification: data mining

Facebook uses it for various things, ie demographic information
Financial services use it for analytics

Astronomy: Gaussian analysis for location extra-terrestrial objects
Expected to play a critical role in semantic web and web3.0

Where is MR Actually Used?

Googe uses it (we think) for wordcount, adwords, pagerank, indexing
Simple algorithms such as grep, text-indexing, reverse indexing
Bayesian classification: data mining

Facebook uses it for various things, ie demographic information
Financial services use it for analytics

Astronomy: Gaussian analysis for location extra-terrestrial objects
Expected to play a critical role in semantic web and web3.0
Bioinformatics and Next-Generation Sequencing (NGS)

Case Study: Optimizing MapReduce

e Many applications in Biolnformatics revolve around next-generation
sequencing
o "NGS has become the leading application area in the domain of bioinformatics" [1]
e Process of analyzing sequences such as DNA to understand different
characteristics of an organism

e Very large DNA strings (sequences of A,C,G, T bases)
o Hundreds of GB of sequence data can be generated from single experiments

e A number of different problems arise: k-mer counting, sequence quality
assessment, read alignment, fast similarity search, etc
e Two sources of knowledge required: domain specific, and big data

[1] Lizhen Shi, Zhong Wang, Weikuan Yu, Xiandong Meng, A case study of tuning MapReduce for efficient Bioinformatics in the
cloud, Parallel Computing, Volume 61, 2017, Pages 83-95, ISSN 0167-8191, https://doi.org/10.1016/j.parco.2016.10.002.

Case Study: Optimizing MapReduce

e Many applications in Biolnformatics revolve around next-generation
sequencing
o "NGS has become the leading application area in the domain of bioinformatics" [1]
e Process of analyzing sequences such as DNA to understand different
characteristics of an organism

e Very large DNA strings (sequences of A,C,G, T bases)
o Hundreds of GB of sequence data can be generated from single experiments

e A number of different problems arise: k-mer counting, sequence quality
assessment, read alignment, fast similarity search, etc
e Two sources of knowledge required: domain specific, and big data

[1] Lizhen Shi, Zhong Wang, Weikuan Yu, Xiandong Meng, A case study of tuning MapReduce for efficient Bioinformatics in the
cloud, Parallel Computing, Volume 61, 2017, Pages 83-95, ISSN 0167-8191, https://doi.org/10.1016/j.parco.2016.10.002.

MapReduce in Bioinformatics

Table 1
Available MapReduce-based Bioinformatics tools.
Name Description
CloudBLAST [9] Combining MapReduce and virtualization on distributed resources for Bioinformatics applications
CloudBurst [10] Highly sensitive read mapping with MapReduce
Biodoop [11] Bioinformatics on Hadoop
Crossbow [12] Searching for SNPs with cloud computing
GATK [13] A MapReduce framework for analyzing next-generation DNA sequencing data
Myrna [14] Cloud-scale RNA-sequencing differential expression analysis
Galaxy [15] A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences
SEAL [16] A distributed short read mapping and duplicate removal tool
CloudAligner [17] A fast and full-featured MapReduce based tool for sequence mapping
Contrail [18] A de Bruijn Genome assembler that uses Hadoop
FX [19] an RNA-Seq analysis tool on the cloud
BioPig [20] A Hadoop-based analytic toolkit for large-scale sequence data
SeqPig [21] Simple and scalable scripting for large sequencing data sets in Hadoop
Halvade [22] Scalable sequence analysis with MapReduce

Many established MapReduce libraries exist for Bioinformatics and NGS

k-mer Counting

e k-mer counting is a critical first step for many NGS applications

e A k-mer refers to all the possible subsequences of length k in a
DNA/RNA sequence

e k-mer counting returns a count of evey k-mer present in a sequence

"When the k-mer size is large and billions of reads need to be
processed, k-mer counting becomes the most difficult problem in
Bioinformatics" [1]

k-mer Counting Mapper

ACGGCTAGAACGCTAACCGATCAGTCAGCTAGAC...

=

<"ACG",1 S

k-mer Counting Mapper

ACGGCTAGAACGCTAACCGATCAGTCAGCTAGAC...

<"ACG",1 S

<"CGC",1 S

k-mer Counting Mapper

ACGGCTAGAACGCTAACCGATCAGTCAGCTAGAC...

<z

<"ACG",1> <"GGC",1>

<"CGC",1 S

k-mer Counting Mapper

ACGGCTAGAACGCTAACCGATCAGTCAGCTAGAC...

e

<IIGCTII,1 >
<"ACG",1> <"GGC",1>

<"CGC",1 S

k-mer Counting Mapper

<"CTA"1>

<"GCT",1 S <"TAA"’1 >

ACGGCTAGAACGCTAACCGATCAGTCAGCTAGAC...

<"AAC" 1>
<"AAC",1 S
<"GCT"1>
<"GAA',1> s'acG" 1>
<"ACG" 1> <"GGC"1> ' etc...
<"CTA",1 S <"AGA",1 S
<'CGC 1> <"CGC" 1>

<'TAG"1>

k-mer Counting Mapper

map(input):
for 1 in [@,input.length - k):
emit(input[i:i+k], 1)

Optimizing k-mer Counting

e Primary goal of the paper is to study optimization
techniques for k-mer counting (in BPig library)

e Studied many different configuration parameters,
segmented into four groups:
o CPU, Memory, I/0, and Network

CPU/Memory Relevant Parameters

e CPU and Memory are obviously important, however many
data-intensive MapReduce applications are 1/0 and network bound
e Primary parameters in CPU/Memory relate to the number of available

cores, and the memory allocated to each container
o These are heavily dependent on the particular cluster being run used
e The one parameter they did look at in a bit more detail is control over

Java garbage collection (GC)

Disk Relevant Parameters

e Intermediate data (largely from mappers) is also stored in HDFS

e Hadoop applications are often I/0 bound; managing intermediate data
size and I/0 costs can provide large benefits

e Relevant parameters are block size and and data compression

Network Parameters

e Mapping phase does not require network usage (computation is
performed local to the datal)
e Reduce phase requires significant network usage
o Shuffle — can run during map phase, but finishes after map completes

o Sort — runs after shuffle completes
o Reduce - runs after sort completes

e MapReduce allows overlap of shuffle and map phases

Network Parameters

Reducer

LA | :
! | |
: ' !
[Map Phase E
T \ :
1
Reduce Phase ']
1
! i Merge 1
' Yhaffle o 1 Reduce
| Shuffle : /Sort ! |
Job ' ¢ E E Job
Start une : : Finish

Fig. 2. Decomposition of reducer phases. [1]

Network Parameters

. This parameter can be configured

Reducer

LA | :
! | |
: ' !
[Map Phase E
T \ :
1
Reduce Phase ']
1
! i Merge 1
' Yhaffle i - 1 Reduce
| Shuffle : /Sort ! |
Job ' ¢ E E Job
Start une : : Finish

Fig. 2. Decomposition of reducer phases. [1]

Intermediate Data

e Intermediate data is the data that is produced during MapReduce

execution (primarily from mappers)
e This data is also stored in HDFS

e Intermediate data is HUGE in k-mer counting
o Think about how many key-value pairs are produced for a single

character in the input string...

Intermediate Data

Table 6
Characteristics of intermediate data for k-mer (k=20)
Table 5 counting.
Characteristics of intermediate data for common Hadoop applications.
Job Name Input data Size (TB) Int. data Size (TB) Int./Input Inpm: size (GB) Int. data size (GB) lnt-/ lnI)Ut
LogProc 1.10 1.10 100% 1 13.5 1350%
NdayModel 3.54 3.54 100% o
BehaviorModel 3.60 9.47 263% 5 67.7 1354%
ClickAttribution 6.80 8.20 121% 10 1354 1354%
SegmentExploder 14.10 25.20 179% 20 270.9 1355%
LogRead 1.10 1.10 100%) o
LogCount 110 0.04 4% 40 541.5 1354%
60 830.0 1383%

100 1381.0 1381%

Intermediate Data

Table 5

Characteristics of intermediate data for common Hadoop applications.
Job Name Input data Size (TB) Int. data Size (TB) | Int./Input
LogProc 1.10 1.10 100%
NdayModel 3.54 3.54 100%
BehaviorModel 3.60 9.47 263%
ClickAttribution 6.80 8.20 121%
SegmentExploder 14.10 25.20 179%
LogRead 1.10 1.10 100%
LogCount 1.10 0.04 4%

Table 6
Characteristics of intermediate data for k-mer (k=20)
counting.
Input size (GB) Int. data size (GB) |Int./Input
1 135 1350%
5 67.7 1354%
10 1354 1354%
20 270.9 1355%
40 541.5 1354%
60 830.0 1383%
100 1381.0 1381%

Intermediate Data

Table 5

Characteristics of intermediate data for common Hadoop applications.
Job Name Input data Size (TB) Int. data Size (TB) | Int./Input
LogProc 1.10 1.10 100%
NdayModel 3.54 3.54 100%
BehaviorModel 3.60 9.47 263%
ClickAttribution 6.80 8.20 121%
SegmentExploder 14.10 25.20 179%
LogRead 1.10 1.10 100%
LogCount 1.10 0.04 4%

Table 6
Characteristics of intermediate data for k-mer (k=20)
counting.
Input size (GB) Int. data size (GB) |Int./Input
1 135 1350%
5 67.7 1354%
10 1354 1354%
20 270.9 1355%
40 541.5 1354%
60 830.0 1383%
100 1381.0 1381%

More than 10 fold increase to data size

Data Compression

e Compressing data can help balance work between I/0 and CPU
e |/0 bound applications often find it worth it to spend extra CPU cycles
to compress data so that I/0 burden is lesser
o Also helps with communication burden on the network
e For BPigs k-mer counting, enabling compression resulted in more
than 50% drop in disk I/0 and ~10% decrease in runtime

Data Compression Results

Table 7

10 Improvement from data compression.

Data size Counter group(GB) Uncompressed Compressed Difference
Map Reduce Total Map Reduce Total Map Reduce Total
40GB Number of bytes read 604 598 1202 283 131 414 321 467 788
Number of bytes written 1200 598 1798 550 131 681 649 467 1117
60GB Number of bytes read 929 917 1846 442 167 609 487 751 1237
Number of bytes written 1839 917 2756 853 167 1020 986 751 1736

Data Compression Results

Table 7

10 Improvement from data compression.

Data size Counter group(GB) Uncompressed Compressed Difference
Map Reduce | Total Map Reduce | Total Map Reduce | Total
40GB Number of bytes read 604 598 1202 283 131 414 321 467 788
Number of bytes written 1200 598 1798 550 131 681 649 467 1117
60GB Number of bytes read 929 917 1846 442 167 609 487 751 1237
Number of bytes written 1839 917 2756 853 167 1020 986 751 1736

Spilling

e |/0is a big bottleneck, we want to reduce this cost as much as we can
e What happens when we run out of memory while working with
intermediated data
o The data must be written to disk. This is called a spill.
o Spills during mapping are particularly problematic
e For k-mer counting, the large intermediate data can cause significant

spilling overheads
o Spill behavior can be controlled by block size and memory per container

_—> Reducer 1

\Y

\ N\ 3
> \i T Reducer 2

\/

I“lapper‘ L> | Circular | —
buffer

Reducer 3

Fig. 1. The flow of data processing across MapReduce tasks.

_—> Reducer 1

§ N\ /// —D

W . Reducer 2

vV VY V

Napper‘ L> | Circular | —
buffer

—> ~>
/ Reducer 3

When this runs out of space, a spill occurs!

Fig. 1. The flow of data processing across MapReduce tasks.

The Cost of Spilling

e One "spill" per map task is the ideal case (intermediate data just
written out to disk once when task completes)

e |[f there is more than one spill for a map task, it results in 3x the I/0
cost because the previous spill data must be read in, and sorted and
merged with the current overflow data

e Keeping the number of spills to 1 per map task can be one of the
most effective ways to improve MapReduce performance

Spilling and Block Size

e Big block size is good to lower startup overhead for mappers
o But it can lead to more spilling — especially with the large intermediate
data size of k-mer
e Experimentation with BPig actually found lower block size to be better
overall due to decrease in spill count
e Lower block size still left some mappers with multiple spills, so more
memory was allocated to the maps ring buffer

N

¢t

91

[[I | | I [
o o o o o o o o
M~ (<] (o] < ™ QV —

(sulw) awi| uonnoax3y qor

v
L
n
K
O
L=
a8
ge
=
s
o0
=
Q.
n

Spilling and Block Size

= 70 Up to ~25% performance improvement
£ %
= 60 — \

o —

= 50

|_

c 40 -

i

S 30

O

2

4 20

Q0

o 10

=

16
32
64

Networking

e Overlapping map and shuffle can lead to benefits but can also
interfere with mapping, and leave long running reduce tasks dangling

e Experimental results from this work showed best performance with
no overlap whatsoever

Networking

—
N
|

.
L
L

Average Stage Execution Time
(0]
|

® o S
o o ~—

mapreduce.job.reduce.slowstart.completedmaps

Map Shuffle Merge @ Reduce

Fig. 5. Impact of reducer start time.

Networking

(O]
E
-

c
=
e

-]

O

Q

x
L

() 6

(®)]

©
+—
»n

()

(®)]

©

S

>
<

Long running shuffle tasks

12

=
o

%

¥V %

® o S
o o ~—

mapreduce.job.reduce.slowstart.completedmaps

Map Shuffle Merge @ Reduce

Fig. 5. Impact of reducer start time.

Overall Results

100 8 Py
100 | 400 - .
20 —o— Default y
Init tuning !
350 < Fine tuning /
N ’
80 11 K
300 i
g M > :
2 60 53 @ /
= [S 250
£ £
0 2 200 ~
=
R —
20 - 2 150
(@]
100
0 -
3 5 = £ e 3 S5
5 % & @ g 5
= ® o = o =
:‘:: E. !=_l (5 o OCJ 0+
£ CE) n = = i T T T T T T
o T 1 10 20 40 60 100
i B
60GB Data Size (GB)

Fig. 6. Impact factors. Fig. 7. Performance comparison.

Overall Results

100 8 | -
= e —o— Default y
Spill reduction had a Init tuning y
. 350 | | ¢ Fine tuning 7
7 huge impact! 3
0 300 - F,
% 60 — . § ;
£ 'S 250
- E
- 2 200
E
D =
207 2 150
&)
100
0 -
T 5§ s E © % o
(92} lo) —
= g o 5 48 P
= £ = 8 £ @ .
< £ a = = £ | | | | | |
© L 1 10 20 40 60 100
60GB Data Size (GB)

Fig. 6. Impact factors. Fig. 7. Performance comparison.

Summary

e Bioinformatics has a number of relevant use cases for MapReduce
o k-mer counting is a critical component for many other types of analysis

e 1/0 bottlenecks can cause significant issues for data-intensive
MapReduce applications

e Tuning to eliminate extra spills and to keep 1/0 costs low can yield
significant improvement

e Application stayed simple (and the same). Flexibility and simplicity of
MapReduce is still a win!

