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Announcements

● Midterm #2 on Wednesday
○ Same logistics as last time: if you were in Alumni 97 for Midterm #1 you 

will be there for Midterm #2
○ Topics are Hadoop and MapReduce (everything we've covered since 

Midterm #1)
○ Monday will be a review



Recap

● Live demo of MapReduce execution on local instance of Hadoop
○ Viewed/manipulated our local Hadoop instance via browser and 

command-line
○ Defined a Mapper, Reducer, and main for a simple word count problem
○ Executed our job and updated our code based on observations

● Very simple code — scales up without change
● The execution/parallelization details are handled by Hadoop



Where is MR Actually Used?

● Google uses it (we think) for wordcount, adwords, pagerank, indexing
● Simple algorithms such as grep, text-indexing, reverse indexing
● Bayesian classification: data mining
● Facebook uses it for various things, ie demographic information
● Financial services use it for analytics
● Astronomy: Gaussian analysis for location extra-terrestrial objects
● Expected to play a critical role in semantic web and web3.0
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Case Study: Optimizing MapReduce

● Many applications in BioInformatics revolve around next-generation 
sequencing
○ "NGS has become the leading application area in the domain of bioinformatics" [1]

● Process of analyzing sequences such as DNA to understand different 
characteristics of an organism

● Very large DNA strings (sequences of A,C,G,T bases)
○ Hundreds of GB of sequence data can be generated from single experiments

● A number of different problems arise: k-mer counting, sequence quality 
assessment, read alignment, fast similarity search, etc

● Two sources of knowledge required: domain specific, and big data
[1] Lizhen Shi, Zhong Wang, Weikuan Yu, Xiandong Meng, A case study of tuning MapReduce for efficient Bioinformatics in the 
cloud, Parallel Computing, Volume 61, 2017, Pages 83-95, ISSN 0167-8191, https://doi.org/10.1016/j.parco.2016.10.002.
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MapReduce in Bioinformatics

Many established MapReduce libraries exist for Bioinformatics and NGS



k-mer Counting

● k-mer counting is a critical first step for many NGS applications
● A k-mer refers to all the possible subsequences of length k in a 

DNA/RNA sequence
● k-mer counting returns a count of evey k-mer present in a sequence

"When the k-mer size is large and billions of reads need to be 
processed, k-mer counting becomes the most difficult problem in 

Bioinformatics" [1]



k-mer Counting Mapper
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k-mer Counting Mapper

map(input):

  for i in [0,input.length - k):

    emit(input[i:i+k], 1)



Optimizing k-mer Counting

● Primary goal of the paper is to study optimization 
techniques for k-mer counting (in BPig library)

● Studied many different configuration parameters, 
segmented into four groups:
○ CPU, Memory, I/O, and Network



CPU/Memory Relevant Parameters

● CPU and Memory are obviously important, however many 
data-intensive MapReduce applications are I/O and network bound

● Primary parameters in CPU/Memory relate to the number of available 
cores, and the memory allocated to each container
○ These are heavily dependent on the particular cluster being run used

● The one parameter they did look at in a bit more detail is control over 
Java garbage collection (GC)



Disk Relevant Parameters

● Intermediate data (largely from mappers) is also stored in HDFS
● Hadoop applications are often I/O bound; managing intermediate data 

size and I/O costs can provide large benefits
● Relevant parameters are block size and and data compression



Network Parameters

● Mapping phase does not require network usage (computation is 
performed local to the data!)

● Reduce phase requires significant network usage
○ Shuffle – can run during map phase, but finishes after map completes
○ Sort – runs after shuffle completes
○ Reduce – runs after sort completes

● MapReduce allows overlap of shuffle and map phases
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This parameter can be configured



Intermediate Data

● Intermediate data is the data that is produced during MapReduce 
execution (primarily from mappers)

● This data is also stored in HDFS
● Intermediate data is HUGE in k-mer counting

○ Think about how many key-value pairs are produced for a single 
character in the input string…
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Intermediate Data

More than 10 fold increase to data size



Data Compression

● Compressing data can help balance work between I/O and CPU
● I/O bound applications often find it worth it to spend extra CPU cycles 

to compress data so that I/O burden is lesser
○ Also helps with communication burden on the network

● For BPigs k-mer counting, enabling compression resulted in more 
than 50% drop in disk I/O and ~10% decrease in runtime
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Spilling

● I/O is a big bottleneck, we want to reduce this cost as much as we can
● What happens when we run out of memory while working with 

intermediated data
○ The data must be written to disk. This is called a spill.
○ Spills during mapping are particularly problematic

● For k-mer counting, the large intermediate data can cause significant 
spilling overheads
○ Spill behavior can be controlled by block size and memory per container
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When this runs out of space, a spill occurs!



The Cost of Spilling

● One "spill" per map task is the ideal case (intermediate data just 
written out to disk once when task completes)

● If there is more than one spill for a map task, it results in 3x the I/O 
cost because the previous spill data must be read in, and sorted and 
merged with the current overflow data

● Keeping the number of spills to 1 per map task can be one of the 
most effective ways to improve MapReduce performance



Spilling and Block Size

● Big block size is good to lower startup overhead for mappers
○ But it can lead to more spilling — especially with the large intermediate 

data size of k-mer
● Experimentation with BPig actually found lower block size to be better 

overall due to decrease in spill count
● Lower block size still left some mappers with multiple spills, so more 

memory was allocated to the maps ring buffer
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Up to ~25% performance improvement



Networking 

● Overlapping map and shuffle can lead to benefits but can also 
interfere with mapping, and leave long running reduce tasks dangling

● Experimental results from this work showed best performance with 
no overlap whatsoever
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Long running shuffle tasks



Overall Results
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Spill reduction had a 
huge impact!



Summary

● Bioinformatics has a number of relevant use cases for MapReduce
○ k-mer counting is a critical component for many other types of analysis

● I/O bottlenecks can cause significant issues for data-intensive 
MapReduce applications

● Tuning to eliminate extra spills and to keep I/O costs low can yield 
significant improvement

● Application stayed simple (and the same). Flexibility and simplicity of 
MapReduce is still a win!


