CSE 4/587
Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

Graph Analysis and Page Rank
What is a Graph?

- A graph is a structure made up of a set of objects, where some pairs of the objects are "related"
- Mathematically, objects are represented with vertices (or nodes or points) and the relations between two vertices are represented with edges (or links or lines)
- Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges
- Edges can be directed or undirected (a relationship can go both ways)
- Edges can be weighted to show the “strength”, distance, etc
Any social media application that you are a part of can be modeled as a graph:
- Vertices are users, posts or images
- Edges are any social relationship between them.

ie: a person hitting 'like' on a particular post/image can be considered an edge
A Biological network can be modelled as a graph

For example, a Protein-Protein interaction graph

- Vertices are proteins
- Edges are interaction between them

Graph Structure is Everywhere

- Graph Data: Information Nets

Citation networks and Maps of science

[Börner et al., 2012]
Graph Structure is Everywhere

- Graph Data: Communications Nets

Internet
Graph Structure is Everywhere

- The internet can be modeled as a graph
 - Vertices are webpages
 - Edges are the links between them
- This modeling can be used to compute the importance of each webpage in the network

Ref: http://www.vlib.us/web/worldwideweb3d.html

This will be the topic of the next few lectures
Graph Representations

How do you represent this visual diagram as data?
Graph Representations

There are two standard ways to represent a graph $G(V,E)$ [V is the set of vertices, E is the set of edges]

1. adjacency list representation
2. adjacency matrix

An adjacency matrix is 2-Dimensional Array of size $V \times V$, where V is the number of vertices in the graph.

Two types of Graph:

1. Directed Graph
2. Undirected Graph
There are two standard ways to represent a graph \(G(V,E)\)
\([V \text{ is the set of vertices, } E \text{ is the set of edges}]

1. adjacency list representation
2. adjacency matrix

An adjacency matrix is 2-Dimensional Array of size \(V \times V\), where \(V\) is the number of vertices in the graph.

An adjacency list is an array of linked lists, where the array size is same as number of vertices in the graph. Every vertex has a linked list. Each node in this linked list represents the reference to another vertex that shares an edge with the current vertex.
Web As a Graph

- Web as a directed graph:
 - **Nodes**: Webpages
 - **Edges**: Hyperlinks

I teach a class on Data science.

CSE 4/587: Classes are in the Crook building.

CSE Department at University at Buffalo.

Buffalo University.
Web As a Graph

- **Web as a directed graph:**
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on Data science.

CSE 4/587: Classes are in the Crook building.

CSE Department at University at Buffalo

Buffalo University
Web As a Directed Graph
How can we organize the internet?

First try: Human Curated
- Web directories
 - Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information Retrieval investigators to find relevant documents in a small and trusted set of newspaper articles, patents, etc.

But:
- Web is huge, full of untrusted documents, random things, web spam, etc.
Broad Question

How can we organize the internet?

First try: Human Curated
- Web directories
- Yahoo, DMOZ, LookSmart (1996)

But:
- Web is huge, full of untrusted documents, random things, web spam, etc.
Broad Question

How can we organize the internet?

First try: Human Curated
- Web directories
- Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information retrieval investigates to find relevant docs in a small and trusted set of newspaper articles, patents, etc.
How can we organize the internet?

First try: Human Curated
- Web directories
- Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information retrieval investigates to find relevant docs in a small and trusted set of newspaper articles, patents, etc.

But: Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search Challenges

Two challenges of web search:

● (1) Web contains many sources of information
 Which can we “trust”?
 ○ **Trick:** If we know one trustworthy page, it may point to another.

● (2) What is the “best” answer to query “newspaper”?
 ○ No single right answer
 ○ **Trick:** Pages that actually know about newspapers might all be pointing to many newspapers
Ranking Nodes in a Graph

All web pages are not equally “important”
Some websites may provide more trustworthy information

Consider the following websites:
<my homepage> vs www.buffalo.edu or www.stanford.edu

Which one is important?
Ranking Nodes in a Graph

All web pages are not equally “important”

Some websites may provide more trustworthy information

Consider the following websites:

<my homepage> vs www.buffalo.edu or www.stanford.edu

The university websites are more important than the other website
Ranking Nodes in a Graph

Large Diversity of web graph in terms of node connectivity
Ranking Nodes in a Graph

Large Diversity of web graph in terms of node connectivity
Ranking Nodes in a Graph

Large Diversity of web graph in terms of node connectivity

Lets rank the pages by Link Structure
Key idea is to use links between pages as votes.
A page is more important if it has more links associated with it.

What kind of links are more important? **Incoming** or **outgoing**?
Link Analysis Algorithm

Key idea is to use links between pages as votes.

A page is more important if it has more links associated with it.

What kind of links are more important? *Incoming or outgoing*?

The incoming links are more important!
Key idea is to use links between pages as \textit{votes}.

A page is more important if it has more links associated with it.

\textbf{What kind of links are more important?} \textit{Incoming or outgoing}?

The incoming links are more important!

\texttt{www.buffalo.edu} is referred to in lot of other pages. So it must be a pretty influential page.

\textit{So do all incoming links have equal weightage?}
Link Analysis Algorithm

- **Think of in-links as votes:**
 - www.buffalo.edu has 23,400 in-links
 - www.myhomepage.com has 3 in-link

www.buffalo.edu is referred to in lot of other pages. So it must be a pretty influential page.

- **So Do all in-links are equal?**
 - Links from important pages count more
Example: PageRank Scores

A
3.3

B
38.4

C
34.3

D
3.9

E
8.1

F
3.9

1.6
1.6
1.6
1.6
1.6
Recursive Formulation

Each link’s vote is proportional to the importance of its source page.

If page j with importance r_j has n out-links, each link gets r_j/n votes.

Page j’s own importance is the sum of the votes on its in-links.
Recursive Formulation

Each link’s vote is proportional to the importance of its source page.

If page j with importance r_j has n out-links, each link gets r_j / n votes.

Page j's own importance is the sum of the votes on its in-links:

$$r_j = (r_i / 3) + (r_k / 4)$$
Page Rank: The Flow Model

A link from an *important page* (higher ranking page) is worth more.

A page is *important* if it is pointed to by other important pages.

Define a “rank” r_j for page j as:

$$ r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} $$

“Flow” equations:

- $r_y = r_y/2 + r_a/2$
- $r_a = r_y/2 + r_m$
- $r_m = r_a/2$
Solving the Flow Equation

3 equations, 3 unknowns, no constants

No unique solution: All solutions equivalent modulo the scale factor

Adding an additional constraint forces uniqueness:

\[r_y + r_a + r_m = 1 \]

Solution: \(r_y = \frac{2}{5}, \quad r_a = \frac{2}{5}, \quad r_m = \frac{1}{5} \)

Gaussian Elimination can be used to find the solution.

This method will work for small graphs, but won’t scale for larger graphs

We need a new formulation!

“Flow” equations:

\[
\begin{align*}
 r_y &= r_y/2 + r_a/2 \\
 r_a &= r_y/2 + r_m \\
 r_m &= r_a/2
\end{align*}
\]
Page Rank: Matrix Formulation

Stochastic Adjacency matrix M,

Let page i has d_i out links

If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

M is a column stochastic matrix

Columns sum to 1
Stochastic Adjacency matrix M

$M_{ij} = 1/(d_i)$ if there is a link from i to j, else value is 0.

If r is vector with the initial importance of a page and $\text{Rank vector } r$ vector with the initial importance of a page then we can write

$$\sum_i r_i = 1$$
Stochastic Adjacency matrix M

$M_{ji} = \frac{1}{d_i}$ if there is a link from i to j, else value is 0

If r is vector with the initial importance of a page and

$$\sum_i r_i = 1$$

Then the flow equation can be written as

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$
Example

- Remember the flow equation:
- Flow equation in the matrix form

\[M \cdot r = r \]

- Suppose page \(i \) links to 3 pages, including \(j \)

\[r_j = \sum_{i \to j} \frac{r_i}{d_i} \]
The flow equations can be written
\[r = M \cdot r \]

So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \). In fact, its first or principal eigenvector, with corresponding eigenvalue 1:

- Largest eigenvalue of \(M \) is 1 since \(M \) is column stochastic (with non-negative entries)
- \(\text{We know } r \text{ is unit length and each column of } M \text{ sums to one, so } M r \leq 1 \)

We can now efficiently solve for \(r \)!
The method is called Power iteration.

NOTE: \(x \) is an eigenvector with the corresponding eigenvalue \(\lambda \) if:
\[A x = \lambda x \]
Solving with Power Iteration

\[r_y = \frac{r_y}{2} + \frac{r_a}{2} \]
\[r_a = \frac{r_y}{2} + r_m \]
\[r_m = \frac{r_a}{2} \]

\[r = M \cdot r \]

\[
\begin{bmatrix}
 y \\
 a \\
 m \\
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 1 \\
 0 & \frac{1}{2} & 0 \\
\end{bmatrix} \begin{bmatrix}
 y \\
 a \\
 m \\
\end{bmatrix}
\]
Solving with Power Iteration

Given a web graph with n nodes, where the vertices are pages and edges are hyperlinks

Power iteration: a simple iterative scheme

Suppose there are N web pages

1. **Initialize:** $\mathbf{r}(0) = [1/N, ..., 1/N]^T$
2. **Iterate:** $\mathbf{r}(t+1) = \mathbf{M} \cdot \mathbf{r}(t)$
3. **Stop when:** $||\mathbf{r}(t+1) - \mathbf{r}(t)||_1 < \varepsilon$

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - 2: $r = r'$
 - Goto 1

- **Example:**

 \[
 \begin{pmatrix}
 r_y \\
 r_a \\
 r_m
 \end{pmatrix} =
 \begin{pmatrix}
 1/3 & 1/3 & 5/12 & 9/24 & \cdots & 6/15 \\
 1/3 & 3/6 & 1/3 & 11/24 & \cdots & 6/15 \\
 1/3 & 1/6 & 3/12 & 1/6 & \cdots & 3/15
 \end{pmatrix}
 \]

 Iteration 0, 1, 2, …

- Table:

 \[
 \begin{array}{ccc}
 y & a & m \\
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 1 \\
 0 & \frac{1}{2} & 0 \\
 \end{array}
 \]

- Formulas:

 - $r_y = \frac{r_y}{2} + \frac{r_a}{2}$
 - $r_a = \frac{r_y}{2} + r_m$
 - $r_m = \frac{r_a}{2}$
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - 1: $r_j' = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - 2: $r = r'$
 - Goto 1

- **Example:**

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} =
\begin{pmatrix}
 1/3 & 1/3 & 5/12 & 9/24 \\
 1/3 & 3/6 & 1/3 & 11/24 \\
 1/3 & 1/6 & 3/12 & 1/6
\end{pmatrix}
\]

\[
\begin{array}{ccc}
 y & a & m \\
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 1 \\
 0 & \frac{1}{2} & 0 \\
\end{array}
\]

- $r_y = r_y/2 + r_a/2$
- $r_a = r_y/2 + r_m$
- $r_m = r_a/2$

Iteration 0, 1, 2, …
References

[2] Chapter 5 Lin and Dyer