CSE 4/587 Data Intensive Computing

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Dr. Shamshad Parvin shamsadp@buffalo.edu 313 Davis Hall

Graph Analysis and Page Rank

Review from previous Lecture

- We have looked the Page Rank in the form of
- ---Flow Model Equations
- – Matrix Formulations
- Find out the Eigen vector form the Matrix Formulations for the Page rank

Imagine a random web surfer

• At any time *t*, the surfer is on some page *i*

Imagine a random web surfer

- At any time *t*, the surfer is on some page *i*
- At time **t** + 1, the surfer follows an out-link from **i** uniformly at random
 - Ends up on some page *j* linked from *i*

Imagine a random web surfer

- At any time *t*, the surfer is on some page *i*
- At time **t** + 1, the surfer follows an out-link from **i** uniformly at random
 - Ends up on some page *j* linked from *i*
- Process repeats infinitely

Imagine a random web surfer

- At any time *t*, the surfer is on some page *i*
- At time t + 1, the surfer follows an out-link from i uniformly at random
 - Ends up on some page j linked from i
- Process repeats infinitely

P(t) is the vector whose **i**th coordinate is the probability that the surfer is at page **i** at time **t**

So **P(t)** is a probability distribution over pages

• Where is the surfer at time *t*+1?

 \circ Follows a link uniformly at random $p(t + 1) = M \cdot p(t)$

Suppose the random walk reaches a state

 $p(t+1) = M \cdot p(t) = p(t)$

then p(t) is **stationary distribution** of a random walk

- Our original rank vector r satisfies $r = M \cdot r$ \circ So, r is a stationary distribution for
 - the random walk

Page RanK: Google Formulations

 $r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \quad \text{or} \quad r = Mr$

Does this value converge ?

Does this value converge ?

Does it converge to the results that we want?

Does this value converge ?

Does it converge to the results that we want?

Are the results reasonable?

Does this converge?

Does this converge?

Does this converge to what we want?

Does this converge to what we want?

Page Rank: Two Problems

1. Dead ends:

- Some pages are dead ends (have no out-link)
- Such pages cause important information to leak

2. Spider traps

- All out-links are within the group
- Random walk gets stuck in a trap
- And eventually spider traps absorbs all importance

Spider Traps

	У	a	m
у	1⁄2	1⁄2	0
a	1⁄2	0	0
m	0	1⁄2	1

 $r_y = r_y/2 + r_a/2$ $r_a = r_y/2$ $r_m = r_a/2 + r_m$

m is a spider trap

Spider Traps

Power Iteration:

Example:

=

r_a

• Set
$$r_j = 1$$

• $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
• And iterate

Iteration 0, 1, 2, ...

1/3 1/6

1/3

1/3

2/6

3/6

All the PageRank score gets "trapped" in node m.

3/12

7/12

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1**- β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
 - This will help the surfer to teleport out of spider trap within a few steps

Dead Ends

	у	а	m
у	1⁄2	1⁄2	0
a	1⁄2	0	0
m	0	1⁄2	0

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2$$
$$r_{m} = r_{a}/2$$

Dead Ends

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Teleports

Teleport with probability 1.0 at dead ends Adjust matric accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps PageRank scores are not what we want
 - **Solution:** Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Google Solution: Random Teleports

- <u>Google's solution that does it all:</u> At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

d_i ... out-degree of node i

1

$$r_j = \sum_{i \to j} \beta \, \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

• PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

• The Google Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

 $[1/N]_{N \times N}$...N by N matrix where all entries are 1/N

- We have a recursive problem: $r = A \cdot r$
- And the Power method still works!
- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

References

[1] http://www.mmds.org

[2] Chapter 5 Lin and Dyer