CSE 4/587

Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall
Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

Graph Analysis and Page Rank

- We have looked the Page Rank in the form of
- ---Flow Model Equations
- -- Matrix Formulations
- Find out the Eigen vector form the Matrix Formulations for the Page rank

Random Walk Interpretation

$$
\begin{aligned}
& (4) \\
& r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{out}}(\mathrm{i})}
\end{aligned}
$$

Random Walk Interpretation

Imagine a random web surfer

- At any time \boldsymbol{t}, the surfer is on some page \boldsymbol{i}

$$
\underbrace{9}_{r_{j}=\sum_{i=1}^{i=1} \frac{r_{i}(i)}{d_{m}(i)}}
$$

Random Walk Interpretation

Imagine a random web surfer

- At any time t, the surfer is on some page i
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from i uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}

Random Walk Interpretation

Imagine a random web surfer

- At any time \boldsymbol{t}, the surfer is on some page \boldsymbol{i}
- At time $\boldsymbol{t}+1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}
- Process repeats infinitely

Random Walk Interpretation

Imagine a random web surfer

- At any time t, the surfer is on some page \boldsymbol{i}
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from \boldsymbol{i} uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}
- Process repeats infinitely
$P(t)$ is the vector whose $\boldsymbol{i}^{\text {th }}$ coordinate is the probability that the surfer is at page \boldsymbol{i} at time \boldsymbol{t}

So $P(t)$ is a probability distribution over pages

Random Walk Interpretation

- Where is the surfer at time $t+1$?
- Follows a link uniformly at random

$$
p(t+1)=M \cdot p(t)
$$

- Suppose the random walk reaches a state

$$
p(t+1)=M \cdot p(t)=p(t)
$$

$$
p(t+1)=\mathrm{M} \cdot p(t)
$$

then $\boldsymbol{p}(\boldsymbol{t})$ is stationary distribution of a random walk

- Our original rank vector r satisfies $r=M \cdot \boldsymbol{r}$
- So, r is a stationary distribution for the random walk

Page RanK: Google Formulations

Google Formulation

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j}{\frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}}_{\substack{\text { equivalenty }}}^{\text {or }} \quad r=M r
$$

Google Formulation

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)} \mathrm{d}_{\mathrm{i}}}{\substack{\text { equivalently } \\ \text { Does this value converge? }}}
$$

Google Formulation

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)} \mathrm{d}_{\mathrm{i}}}{\substack{\text { equivalently } \\ \text { Does this value converge? }}}
$$

Does it converge to the results that we want?

Google Formulation

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}} \underset{\text { equivalently }}{\text { or }} \quad \boldsymbol{\text { Does this value converge? }}<
$$

Does it converge to the results that we want?
Are the results reasonable?

Does this converge?

$$
\mathrm{a} \rightleftarrows \mathrm{~b} \quad r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

Does this converge?

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Example:

Does this converge to what we want?

Does this converge to what we want?

- Example:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{a}} \\
& \mathrm{r}_{\mathrm{b}}
\end{aligned}=\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\text { Iteration } 0,1,2, \ldots
\end{array}
$$

Page Rank: Two Problems

1. Dead ends:

- Some pages are
dead ends (have no out-link)
- Such pages cause important information to leak

2. Spider traps

- All out-links are within the group
- Random walk gets stuck in a trap
- And eventually spider traps absorbs all importance

Spider Traps

m is a spider trap

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

$$
\begin{aligned}
& r_{y}=r_{y} / 2+r_{a} / 2 \\
& r_{a}=r_{y} / 2 \\
& r_{m}=r_{a} / 2+r_{m}
\end{aligned}
$$

Spider Traps

- Power Iteration:
- Set $r_{j}=1$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate
- Example:

$$
\begin{aligned}
& \left(\begin{array}{c}
\left(\begin{array}{ll}
r_{y} \\
r_{a} \\
r_{m}
\end{array}\right)=\begin{array}{ll}
1 / 3 & 2 / 6 \\
& 1 / 3 \\
1 / 3 & 1 / 6 \\
& 3 / 6 \\
& \text { Iteration } 0,1,2, \ldots
\end{array}
\end{array}\right. \\
& \text { Iteration 0, 1, 2, . }
\end{aligned}
$$

m is a spider trap

$$
\begin{aligned}
& 3 / 12 \\
& 2 / 12 \\
& 7 / 12
\end{aligned}
$$

5/24
3/24
16/24

	y	a	m	
y	1/2	1/2	0	
a	1/2	0	0	
m	0	1/2	1	

$r_{a}=r_{y} / 2$
$r_{m}=r_{a} / 2+r_{m}$

0
0
1

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. 1- $\boldsymbol{\beta}$, jump to some random page
- Common values for β are in the range 0.8 to 0.9
- This will help the surfer to teleport out of spider trap within a few steps

Dead Ends

$$
\begin{aligned}
\mathbf{r}_{\mathrm{y}} & =\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
\mathbf{r}_{\mathrm{a}} & =\mathbf{r}_{\mathrm{y}} / 2 \\
\mathbf{r}_{\mathrm{m}} & =\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

Dead Ends

Power Iteration:

Set $r_{j}=1$

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}
$$

And iterate

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	0

$$
r_{y}=r_{y} / 2+r_{a} / 2
$$

$$
r_{a}=r_{y} / 2
$$

$$
\mathbf{r}_{\mathrm{m}}=\mathrm{r}_{\mathrm{a}} / 2
$$

Iteration 0, 1, 2, ...
Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Teleports

Teleport with probability 1.0 at dead ends Adjust matric accordingly

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	$1 / 2$		
	0	$1 / 2$	0

	y		a		m
y	$1 / 2$	$1 / 2$	$1 / 3$		
a	$1 / 2$	0	$1 / 3$		
m	0	$1 / 2$	$1 / 3$		

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps PageRank scores are not what we want
- Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
- The matrix is not column stochastic so our initial assumptions are not met
- Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Google Solution: Random Teleports

- Google's solution that does it all:

At each step, random surfer has two options:

- With probability β, follow a link at random
- With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

The Google Matrix

- PageRank equation [Brin-Page, '98]
- The Google Matrix A:

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

$$
A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

- We have a recursive problem: $\boldsymbol{r}=\boldsymbol{A} \cdot \boldsymbol{r}$
- And the Power method still works!
- What is β ?
- In practice $\beta=0.8,0.9$ (make 5 steps on avg., jump)
$[1 / \mathrm{N}]_{\mathrm{NXN}} \ldots \mathrm{N}$ by N matrix where all entries are $1 / \mathrm{N}$

Random Teleports ($\beta=0.8$)

y						
a	$=1 / 3$	0.33	0.24	0.26		$7 / 33$
m	$1 / 3$	0.20	0.20	0.18		$5 / 33$
$1 / 3$	0.46	0.52	0.56		$21 / 33$	

References

[1] http://www.mmds.org
[2] Chapter 5 Lin and Dyer

