
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

CSE 4/587
Data Intensive Computing

What is a Graph?

● A graph is a structure made up of a set of objects,
where some pairs of the objects are "related"

● Mathematically, objects are represented with
vertices (or nodes or points) and the relations
between two vertices are represented with edges
(or links or lines)

● Typically, a graph is depicted in diagrammatic form as a set of dots or
circles for the vertices, joined by lines or curves for the edges

● Edges can be directed or undirected (a relationship can go both ways)
● Edges can be weighted to show the “strength”, distance, etc

Graph Representations

There are two standard ways to represent a graph G(V,E) [V is the set of vertices, E is the set of edges]
1. adjacency list representation
2. adjacency matrix

An adjacency matrix is 2-Dimensional Array of size VxV, where V is the number of vertices in the graph.

An adjacency list is an array of linked lists, where the array size
is same as number of vertices in the graph. Every vertex has a
linked list. Each node in this linked list represents the reference
to another vertex that shares an edge with the current vertex.

Single Source Shortest Path

Sequential solution: Dijkstra’s algorithm
d[s] = 0
for all other vertices d[v] = ∞
Q = {V} // Q is priority queue based on distances
while Q not empty
 u = min(Q) // node with min d value
 for all vertex v in u.adjacencyList
 if d[v] > d[u] + w[u,v]
 d[v] = d[u] + w[u,v]
 mark u and remove from Q

At each iteration of while loop, the algorithm expands the node with the shortest
distance and updates distances to all reachable nodes

Sample graph : lets apply the algorithm 5.2

A

n2

n3

n4

n5

0

10

5

2 3

1

9

4 6

7

2

Example

Single Source Shortest Path

How do we apply this algorithm if we have a graph with large number of
nodes and edges between them? MapReduce?

What is the main issue here?

The algorithm is sequential, needs a global state

Global states are not possible with map reduce…

Graph Processing in MapReduce

Let's see how we can handle a graph problem in parallel breadth first with
MapReduce

(The intuition behind the algorithm is this: the distance of all nodes connected
directly to the source node is one; the distance of all nodes directly connected to
those
is two; and so on.)

Remember, the MapReduce paradigm requires a mapper function and a
reducer function

Issues in Processing a Graph in MR

Goal: Start from a given node and label all the nodes in the graph so that we can
determine the shortest distance.

Assume all the distance between edges is one.

Problems to Tackle:

1. How do we represent our graph?
2. What are our <key,value> pairs?

3. How do we iterate through various stages of processing?
4. When/how do we terminate execution?

Issues in Processing a Graph in MR

Goal: Start from a given node and label all the nodes in the graph so that we can
determine the shortest distance.

Assume all the distance between edges is one.

Problems to Tackle:

1. How do we represent our graph?
2. What are our <key,value> pairs?

3. How do we iterate through various stages of processing?
4. When/how do we terminate execution?

Issues in Processing a Graph in MR

Goal: Start from a given node and label all the nodes in the graph so that we can
determine the shortest distance.

Assume all the distance between edges is one.

Problems to Tackle:

1. How do we represent our graph?
2. What are our <key,value> pairs?

3. How do we iterate through various stages of processing?
4. When/how do we terminate execution?

Issues in Processing a Graph in MR

Goal: Start from a given node and label all the nodes in the graph so that we can
determine the shortest distance.

Assume all the distance between edges is one.

Problems to Tackle:

1. How do we represent our graph?
2. What are our <key,value> pairs?

3. How do we iterate through various stages of processing?
4. When/how do we terminate execution?

Issues in Processing a Graph in MR

Goal: Start from a given node and label all the nodes in the graph so that we can
determine the shortest distance.

Assume all the distance between edges is one.

Problems to Tackle:

1. How do we represent our graph?
2. What are our <key,value> pairs?

3. How do we iterate through various stages of processing?
4. When/how do we terminate execution?

Issues in Processing a Graph in MR

Goal: Start from a given node and label all the nodes in the graph so that we can
determine the shortest distance.

Assume all the distance between edges is one.

Problems to Tackle:

1. How do we represent our graph?
2. What are our <key,value> pairs?

3. How do we iterate through various stages of processing?
4. When/how do we terminate execution?

Graph Representation and Input Format

Our graphs will be represented as a collection of Node objects

Node:
nodeId,
distanceLabel,
adjancencyList[nodeId, distance],
...

Input the graph as text and parse it to build our <key, value> pairs

So what are our <key, value> pairs?

<key, value> pairs

From mapper to reducer two types of <key, value> pair:
1. <nodeId n, Node N> // nodeId to Node object

2. <nodeId n, distance> // nodeId to distance so far

Iteration

● Each iteration in the algorithm is a MapReduce job
● Iterations and termination are coordinate by an external driver

application (more on this in future lectures)
● The first iteration starts at the source node (with distance 0)

○ It updates and emits all distances for nodes in the adjacency list
● The next iteration takes the output from the previous and

updates/emits all distances for nodes connected to this set of nodes
● Continue until termination

Termination

Termination condition also needs to be tracked in the Node class

Terminate when the graph has reached a steady state:
● All the nodes have been labeled with min distance
● Labels no longer change between iterations

Mapper Class

class Mapper
 method map (nodeId n, Node N)
 d ← N.distance
 emit(n, N) // type 1
 for nodeId m in N.adjacencyList
 emit(m, d+1) // type 2

The method map takes in two parameters, nodeId n and Node N

The method produces two key value pairs <n, N> and the updated distance to all of the adjacent
nodes <m, d+1>

Reducer Class

class Reducer
 method Reduce(nodeId n, [d1, d2, d3..])
 dmin ← ∞; // or a large #
 Node N ← null

 for all d in [d1, d2, ...]:
 if IsNode(d) then N ← d
 else if d < dmin then dmin ← d

 N.distance ← dmin // update the shortest distance in N
 emit (n, N)

Trace with Sample Data

Input Graph

1 0 2:3:

2 10000 3:4:

3 10000 2:4:5

4 10000 5:

5 10000 1:4

5

1

2
3

4

Node

Adjacent
outlink node

distance

Trace with Sample Data

Input Graph

1 0 2:3:

2 10000 3:4:

3 10000 2:4:5

4 10000 5:

5 10000 1:4

5

1

2
3

4

Input to the first iteration d: 0

Intermediate Result

Input Graph

1 0 2:3:

2 1 3:4:

3 1 2:4:5

4 10000 5

5 10000 1:4

5

1

2
3

4

d: 0

d: 1
d: 1

<nodeId 2, distance 1>
<nodeId 3, distance 1>

Intermediate Result

Input Graph

1 0 2:3:

2 1 3:4:

3 1 2:4:5

4 10000 5:

5 10000 1:4

5

1

2
3

4

d: 0

d: 1
d: 1

<nodeId 2, distance 1>
<nodeId 3, distance 1>

Input to the next iteration

Final Result

Input Graph

1 0 2:3:

2 1 3:4:

3 1 2:4:5

4 2 5:

5 2 1:4

5

1

2
3

4

d: 0

d: 1
d: 1

<nodeId 4, distance 2>
<nodeId 5, distance 2>

d: 2

d: 2

Final Result

PageRank

● Last time we looked at PageRank
○ Algorithm for ranking the importance of pages on the internet
○ Internet represented as a graph

■ Pages are vertices
■ Links are edges

● The internet is huge, graph requires parallel processing…

How can we do PageRank in MapReduce?

Page Rank: The Flow Model

A link from an important page (higher ranking
page) is worth more

A page is important if it is pointed to by other
important pages

Define a “rank” rj for page j as:

Solving the Flow Equation

3 equations, 3 unknowns, no constants

No unique solution: All solutions equivalent modulo the
scale factor

Adding an additional constraint forces uniqueness:

ry + ra+ rm = 1

Gaussian Elimination can be used to find the solution.

This method will work for small graphs, but won’t scale for
larger graphs

Page Rank: Matrix Formulation

Stochastic Adjacency matrix M

Mji = 1/(di) if there is a link from i to j, else value is 0

If r is vector with the initial importance of a page and

Then the flow equation can be written as

r = M · r

Solving with Power Iteration

Solving with Power Iteration

Given a web graph with n nodes, where the vertices are pages and edges
are hyperlinks

Power iteration: a simple iterative scheme

Suppose there are N web pages
1. Initialize: r(0) = [1/N,….,1/N]T

2. Iterate: r(t+1) = M ∙ r(t)
3. Stop when: ||r(t+1) – r(t)||1< ε

Google Formulation

Does this value converge ?

Does it converge to the results that we want?

Are the results reasonable?

Page Rank: Two Problems

1. Dead ends:

● Some pages are
dead ends (have no out-link)

● Such pages cause important information to leak

2. Spider traps
● All out-links are within the group
● Random walk gets stuck in a trap
● And eventually spider traps absorbs all importance

 Spider Traps

●

Iteration 0, 1, 2, …

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2
ra = ry /2
rm = ra /2 + rm

All the PageRank score gets “trapped” in node m.

y

a m
m is a spider
trap

Solution: Teleports!
● The Google solution for spider traps: At each time step, the random

surfer has two options
○ With prob. β, follow a link at random
○ With prob. 1-β, jump to some random page
○ Common values for β are in the range 0.8 to 0.9
○ This will help the surfer to teleport out of spider trap within a few steps

y

a m

y

a m

Dead Ends

y

a m

Here the PageRank “leaks” out since the matrix is not stochastic.

Solution: Teleports
Teleport with probability 1.0 at dead ends

Adjust matric accordingly

Google's Solution

Googles solution for
PageRank:

In matrix notation:

PageRank with MapReduce

● In the map phase we evenly divide up each node's PageRank mass and pass
each piece along outgoing edges to neighbors.

● In the reduce phase PageRank contributions are summed up at each
destination node.

● Each MapReduce job corresponds to one iteration of the algorithm.

PageRank with MapReduce

Let us assume for now that β is 1.0 (no teleporting)

class Mapper

 method map (nodeId n, Node N)

 p ← N.pagerank / N.adajacencyList.size

 emit(n, N) // Emit the graph structure

 for all m in N.adjacencyList

 emit(m, p) // Emit the contributions from N

PageRank with MapReduce

Class Reducer

 method Reduce(nodeId n, [p1, p2, p3..])

 node N ← null; s ← 0;

 for all p in [p1,p2, ..]:

 if IsNode(p) then: N ← p

 else: s ← s + p

 N.pagerank ← s

 emit(n, N)

PageRank – MapReduce

PageRank with MapReduce

How do we account for dead ends nodes?
● Simply redistribute its PageRank to all other nodes
● One iteration requires PageRank computation + redistribution of “unused”

PageRank
○ Track total leaked PageRank during the computation, then redistribute it as a second

MapReduce job in the same iteration

What about breaking out of spider traps?
● This can also be taken care of when the leaked PageRank is redistributed from

dead ends

Second Phase Redistribution Formula:

PageRank with MapReduce

How do we account for dead ends nodes?
● Simply redistribute its PageRank to all other nodes
● One iteration requires PageRank computation + redistribution of “unused”

PageRank
○ Track total leaked PageRank during the computation, then redistribute it as a second

MapReduce job in the same iteration

What about breaking out of spider traps?
● This can also be taken care of when the leaked PageRank is redistributed from

dead ends

Second Phase Redistribution Formula:

PageRank with MapReduce

How do we account for dead ends nodes?
● Simply redistribute its PageRank to all other nodes
● One iteration requires PageRank computation + redistribution of “unused”

PageRank
○ Track total leaked PageRank during the computation, then redistribute it as a second

MapReduce job in the same iteration

What about breaking out of spider traps?
● This can also be taken care of when the leaked PageRank is redistributed from

dead ends

Second Phase Redistribution Formula:

PageRank with MapReduce

How do we account for dead ends nodes?
● Simply redistribute its PageRank to all other nodes
● One iteration requires PageRank computation + redistribution of “unused”

PageRank
○ Track total leaked PageRank during the computation, then redistribute it as a second

MapReduce job in the same iteration

What about breaking out of spider traps?
● This can also be taken care of when the leaked PageRank is redistributed from

dead ends

Second Phase Redistribution Formula:
Random hop probability

Total leaked PageRank
"mass"

PageRank from first phase
Number of node in the

entire graph

PageRank with MapReduce

● One iteration of PageRank requires two MapReduce jobs :
● -----First to distribute PageRank mass along graph edges
● -----second to take care of dangling nodes and the random jump factor.

● At end of each iteration, we end up with exactly the same data structure as

the beginning, which is a requirement for the iterative algorithm to work.
● The PageRank values of all nodes sum up to one, which ensures a valid

probability distribution.

PageRank with MapReduce

How do we know when convergence is reached?
● When the ranks of pages do not change (or change by less than some

small epsilon value)

For large graphs, the rank of any particular node is often so small that it
underflows standard floating point representations
● A very common solution to this problem is to represent ranks using

their logarithms

PageRank with MapReduce
How many iterations are necessary for PageRank to converge?
This is a difficult question to precisely answer since it depends on many
factors.
According to this paper [3]Convergence on a graph with 322 million edges
was reached in 52 iterations.
On today's web, the answer is not very meaningful:
 -- web is full of spam and untrusted sites that are actively trying to game
PageRank
Many strategies/algorithm has developed by web search companies
-- these algorithmic modifications impacted the convergence behavior.

Summery

We covers Graph and Page rank algorithm in MapReduce
Both are instances of a large class of iterative algorithms that share the following
characteristics:
● The graph structure is represented with adjacency lists.
● Algorithms map over nodes and pass results to nodes on their adjacency lists.
● Results are aggregated for each node in the reducer.
● The graph structure itself is passed from the mapper to the reducer, such that

the output is in the same form as the input.
● Algorithms are iterative and under the control of a non-MapReduce program,
 which checks for termination at the end of each iteration.

References

[1] http://www.mmds.org

[2] Chapter: 5 Lin and Dyer

[3] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
Page-
Rank citation ranking: Bringing order to theWeb. Stanford Digital
LibraryWorking Paper SIDL-WP-1999-0120, Stanford University, 1999.

http://www.mmds.org/

