
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

CSE 4/587
Data Intensive Computing

Resilient Distributed Datasets in Spark

Announcements

● Homework 2 has been posted, due 5/1/23 @ 11:59PM

References

● Advanced Analytics with Spark by S. Ryza, U. Laserson, S. Owen and J. Wills

● Apache Spark documentation
○ http://spark.apache.org/
○ http://spark.apache.org/docs/latest/programming-guide.html

● Pyspark
○ http://spark.apache.org/docs/latest/api/python/pyspark.html

● Resilient Distributed Dataset: A Fault-tolerant Abstraction for
in-Memory Cluster Computing. M. Zaharia et al.
○ https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

http://spark.apache.org/
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/api/python/pyspark.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

Resilient Distributed Datasets (RDDs)

The building block of the Spark API
(http://spark.apache.org/docs/latest/programming-guide.html#resilient-d

istributed-datasets-rdds)

In RDD API there are two types of operations:
1. Transformations that define a new data set based on previous ones
2. Actions which kick off a job to execute on a cluster

http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds
http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds

Resilient Distributed Datasets (RDDs)

A distributed memory abstraction that enables in-memory computations
on large clusters in a fault-tolerant manner
● Motivation: iterative algorithms, interactive data mining tools

○ In both cases above keeping data in memory will help enormously for
performance improvement

● RDDs are parallel data structures allowing coarse grained
transformations

● It provides fault-tolerance by storing the lineage as opposed to the
actual data as done in Hadoop

RDD
Transformations
and Actions

RDD Transformations and Actions

Transformations
vs

Actions

WordCount in Spark

text-file = sc.textFile(“hdfs://…”)

counts = text_file.flatMap(lambda line: line.split(“ “))

 .map(lambda word: (word,1))

 .reduceByKey(lambda a,b: a+b)

WordCount in Spark

text-file = sc.textFile(“hdfs://…”)

counts = text_file.flatMap(lambda line: line.split(“ “))

 .map(lambda word: (word,1))

 .reduceByKey(lambda a,b: a+b)

These operations are transformations…at this point no
computation is done on our data, just a DAG is constructed

WordCount in Spark

text-file = sc.textFile(“hdfs://…”)

counts = text_file.flatMap(lambda line: line.split(“ “))

 .map(lambda word: (word,1))

 .reduceByKey(lambda a,b: a+b)

counts.saveAsTextFile(“hdfs://..”)

This is an action…at this point the data we want to save to file has to
actually be computed. But we have the full DAG for how counts is
computed, so Spark can do this computation efficiently…

RDD Lineage

An RDD can depend on zero or more other RDDs
● ie when x = y.map(...), x will depend on y
● These dependency relationships can be thought of as a graph.

You can call this graph a lineage graph, as it represents the derivation of each RDD
● It is also necessarily a DAG, since a loop is impossible to be present in it.
● Narrow dependencies, where a shuffle is not required (think map and filter) can be

collapsed into a single stage.
○ A stage is a unit of execution, generated by the scheduler from RDD dependency graph
○ Stages also depend on each other and the scheduler builds and uses this dependency

graph (which is also necessarily a DAG) to schedule the stages

RDD Lineage

Resilience in HDFS vs Spark

HDFS

Fault-tolerance achieved by
replicating blocks of data

If a node goes down, the data can
be found on another node

Spark

Fault-tolerance achieved by
storing chain of transformations

If data is lost, the chain of
transformations can be
recomputed on the original data

Spark will often use HDFS for stable storage of the original data

Representing RDDs

Each RDD is represented through a common interface that exposes 5 pieces of information:
1. A set of partitions, atomic pieces of datasets
2. Set of dependencies on the parent RDDs
3. Function for computing the RDD from the parents
4. Metadata about partitioning scheme
5. Data placement

See table 3 in the RDD paper →

Dependencies

Narrow dependencies: each parent RDD partition used by at most one child; ie map()
● allow pipelined execution: example map() and filter() in iterative fashion
● recovery after node failure is more efficient

Wide dependencies: multiple child partitions may depend on a parent RDD; ie join()
● Single failed node in a wide dependency lineage graph may cause loss of partition

in many ancestral dependencies

Example Transformations

Map: Applying map to an RDD results in a new MappedRDD whose partitions
and preferred locations are the same as the parent. It's iterator method applies
the passed in function to the parent partitions.

Union: Called on 2 RDDs and returns an RDD whose partitions are the union of
the parents partitions. Each child partition is computed from the corresponding
parent partition.

Join: Joining two RDDs leads to two narrow dependencies if both parents are
partitioned with the same partitioner), two wide dependencies, or a mix

Example Transformations

Map: Applying map to an RDD results in a new MappedRDD whose partitions
and preferred locations are the same as the parent. It's iterator method applies
the passed in function to the parent partitions.

Union: Called on 2 RDDs and returns an RDD whose partitions are the union of
the parents partitions. Each child partition is computed from the corresponding
parent partition.

Join: Joining two RDDs leads to two narrow dependencies if both parents are
partitioned with the same partitioner), two wide dependencies, or a mix

Example Transformations

Map: Applying map to an RDD results in a new MappedRDD whose partitions
and preferred locations are the same as the parent. It's iterator method applies
the passed in function to the parent partitions.

Union: Called on 2 RDDs and returns an RDD whose partitions are the union of
the parents partitions. Each child partition is computed from the corresponding
parent partition.

Join: Joining two RDDs leads to two narrow dependencies if both parents are
partitioned with the same partitioner), two wide dependencies, or a mix

Narrow Dependencies

Narrow dependencies: each parent RDD
partition used by at most one child
● We can pipeline computation of

multiple narrow dependencies
(compute map, followed by filter on
a per element basis for example)

Wide Dependencies

Wide dependencies: multiple child partitions
may depend on a parent RDD
● All data from all parents must be

available (may require expensive data
shuffling)

● Note: Joins may be either narrow or
wide (or mixed) depending on how
parents are partitioned

Execution Model

Remember: Transformations are lazily applied; Actions result in actual
computation

When a user runs an action on an RDD, the scheduler uses that RDD's
lineage graph to build a DAG of stages.
● Each stage contains as many pipelined transformations (with narrow

dependencies) as possible
● Stage boundaries determined by wide dependencies, or already

computed data

Execution Model

The figure to the right shows RDDs
A-G, and the transformations used
to derive them.

Black boxes are partitions that are
already computed and stored in
memory.

Execution Model

Stage 1: RDD B is derived from RDD
A by a groupBy transformation.

Execution Model

Stage 1: RDD B is derived from RDD
A by a groupBy transformation.

The groupBy results in wide
dependencies, and therefore required
data to be shuffled.

Execution Model

Stage 1: RDD B is derived from RDD
A by a groupBy transformation.

The groupBy results in wide
dependencies, and therefore required
data to be shuffled.

The groupBy therefore is the
boundary of stage 1.

Execution Model

Stage 2: RDD F is derived by a union
on D and E. D is derived by map on C.

Execution Model

Stage 2: RDD F is derived by a union
on D and E. D is derived by map on C.

All of these operations involve
narrow dependencies and can be
pipelined.

Execution Model

Stage 2: RDD F is derived by a union
on D and E. D is derived by map on C.

All of these operations involve
narrow dependencies and can be
pipelined.

RDD G is the result of join on F and B,
so this is the boundary of stage 2.

Execution Model

Stage 3: RDD G is derived from a join
on RDD B and G.

Execution Model

Stage 3: RDD G is derived from a join
on RDD B and G.

G is NOT COMPUTED until the user
executes an action on G, ie saving to
disk, or performing a reduction.

Execution Model

When the user calls an action on G:

Stage one does not need to be
executed (B is already in memory)

Execution Model

When the user calls an action on G:

Stage one does not need to be
executed (B is already in memory)

Stage 2 is scheduled for execution,
followed by stage 3.

Optimizing: Persisting and Partitioning

Spark applications separate application logic from optimization logic
This allows developers to focus on correctness and performance
separately.

Optimizing: Persisting and Partitioning

Spark applications separate application logic from optimization logic
This allows developers to focus on correctness and performance
separately.

We saw a similar pattern with MapReduce: Correctness was entirely
determined by Map and Reduce tasks, but then components like
combiners and partitioners could provide performance benefits without
changing correctness.

Partitioning

Spark allows us to specify how our data is partitioned

● Careful choice of partitioning can allow for more efficient execution
● For example, if two RDDs have the same partitioning scheme,

performing a join transformation on them results in narrow
dependencies (can be pipelined, cheaper fault-tolerance)

● Can also avoid the need for some communication

Persisting

Spark allows us to "persist" an RDD (keep it in memory)

● Spark allows users to call persist() on RDDs to keep them in storage
(either in memory or on disk, depending on what we ask for)

● By persisting an RDD, we will not have to re-compute it or re-read it
from disk in the future

● For iterative applications, this can result in huge performance gains
that are not feasible with something like MapReduce

Example:
PageRank

PageRank in Spark requires 3 RDDs:

1. The RDD containing the static graph
links we are working with. Does not
change across iterations.

Example:
PageRank

PageRank in Spark requires 3 RDDs:

1. The RDD containing the static graph
links we are working with. Does not
change across iterations.

2. The RDD containing the ranks of each
vertex for the current iteration.
Derived from contributions from
previous iterations.

Example:
PageRank

PageRank in Spark requires 3 RDDs:

1. The RDD containing the static graph
links we are working with. Does not
change across iterations.

2. The RDD containing the ranks of each
vertex for the current iteration.
Derived from contributions from
previous iterations.

3. The RDD containing the contributions
of each page to its neighbors. This is
the result of a join on ranks and links

Example:
PageRank

Lineage graph for PageRank in Spark

Example:
PageRank

Once we have the PageRank logic
correct, we can optimize by effective use
of persistence and partitioning:

Example:
PageRank

Once we have the PageRank logic
correct, we can optimize by effective use
of persistence and partitioning:

Partitioning: Each iteration we must
perform a join on links and ranks.

If we partition the data for both RDDs the
same (for example, hashing based on
URL), then the data can be co-located and
pipelined efficiently.

This will also mean our joins will not
require data shuffling/communication.

Example:
PageRank

Once we have the PageRank logic
correct, we can optimize by effective use
of persistence and partitioning:

Partitioning: Each iteration we must
perform a join on links and ranks.

If we partition the data for both RDDs the
same (for example, hashing based on
URL), then the data can be co-located and
pipelined efficiently.

This will also mean our joins will not
require data shuffling/communication.

Example:
PageRank

Once we have the PageRank logic
correct, we can optimize by effective use
of persistence and partitioning:

Partitioning: Each iteration we must
perform a join on links and ranks.

If we partition the data for both RDDs the
same (for example, hashing based on
URL), then the data can be co-located and
pipelined efficiently.

This will also mean our joins will not
require data shuffling/communication.

Example:
PageRank

Once we have the PageRank logic
correct, we can optimize by effective use
of persistence and partitioning:

Persistence: The links RDD is required
every iteration. If we persist the links RDD
it will be in memory when we need it.

As we perform more iterations, the
lineage graph gets longer. For better
resilience we can also persist some
intermediate iterations.

Example:
PageRank

Once we have the PageRank logic
correct, we can optimize by effective use
of persistence and partitioning:

Persistence: The links RDD is required
every iteration. If we persist the links RDD
it will be in memory when we need it.

As we perform more iterations, the
lineage graph gets longer. For better
resilience we can also persist some
intermediate iterations.

