
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

CSE 4/587
Data Intensive Computing

Spark Streaming

References

● Spark Streaming Programming Guide
● http://spark.apache.org/docs/latest/streaming-programming-guide.html
● Apache Spark documentation
● ○ http://spark.apache.org/
● Advanced Analytics with Spark by S. Ryza, U. Laserson, S. Owen and J. Wills
● Data brick website :
https://www.databricks.com/glossary/what-is-spark-streaming
● Discretized Streams: A Fault-Tolerant Model for Scalable Stream

Processing, Matei Zaharia ,Tathagata Das et al.
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf

https://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/
https://www.databricks.com/glossary/what-is-spark-streaming
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf

What Is Spark?

● Parallel execution engine for big data processing

● Easy to use: 2-5x less code than Hadoop MR
○ High level API’s in Python, Java, and Scala

● Fast: up to 100x faster than Hadoop MR
○ Can exploit in-memory when available
○ Low overhead scheduling, optimized engine

● General: support multiple computation models

A Short History

● Started at UC Berkeley in 2009

● Open Source: 2010

● Apache Project: 2013

● Today: most popular big data processing engine

Interactive Streaming Vs Batch

● Interactive Streaming : Continuous flow of data/event
example: Tweet event , stream of log messages

● Batch : Data collected in regular interval of time

Motivation

 Many important applications must process large streams of live data and
provide results in near-real-time
- Social network trends
- Website statistics
- Intrusion detection systems
- etc.

 Require large clusters to handle workloads

 Require latencies of few seconds

Need for a framework …

… for building such complex stream processing applications

But what are the requirements
from such a framework?

Requirements

 Scalable to large clusters
 Achieves Low latencies
 Simple programming model
 Efficient recovery from failure
 Integrates batch and interactive processing

Why MR is not a Solution for streaming Real Data

● Great for large amounts of static data
– Data is not moving!

• For streams: only for large windows
▪High latency, low efficiency

Figure : Tyler Akidau

What people have been doing ?

● Existing frameworks cannot do both
- Either, stream processing of 100s of MB/s with low latency
- Or, batch processing of TBs of data with high latency

● Build two stacks – one for batch, one for streaming
● Extremely painful to maintain two different stacks

- Different programming models
- Doubles implementation effort
- Doubles operational effort

Fault-tolerant Stream Processing

● Traditional processing model
--Pipeline of nodes
– Each node maintains mutable state
– Each input record updates the state

--and new records are sent out
● Mutable state is lost if node fails
● Making stateful stream processing
● Fault-tolerant is challenging!

mutable state

node 1

node 3

input
records

node 2

input
records

What is Spark Streaming?

● Spark Streaming is a scalable fault-tolerant streaming processing
system that natively supports both batch and streaming
workloads.

● It is an extension of the Spark API that process live data stream in
a real time

Streaming Engine

Data Source of Spark Streaming

Data Source of Spark Streaming

Image : databricks

Major Aspects of Spark Streaming

• Fast recovery from failures and stragglers
• Better load balancing and resource usage
• Combining of streaming data with static datasets and interactive

queries
• Native integration with advanced processing libraries (SQL,

machine learning, graph processing)

How does it work?
● Data streams are chopped into batches of few secs
● SPARK treats each batches of data s RDDs and process them using

RDD operator
● Each batch is processed in Spark
● Results pushed out in batches

Streaming

data streams

re
ce

iv
er

s
batches results

Spark Streaming Programming Model

Discretized Stream (DStream)
- Represents a stream of data
- Implemented as a sequence of RDDs
DStreams API very similar to RDD API

- Create input DStreams from different sources
- Apply parallel operations

Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic
batch jobs

18

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

 Chop up the live stream into batches of X
seconds

 Spark treats each batch of data as RDDs and
processes them using RDD operations

 Finally, the processed results of the RDD
operations are returned in batches

Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic
batch jobs

19

 Batch sizes as low as ½ second, latency ~ 1
second

 Potential for combining batch processing and
streaming processing in the same system

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

DStream
● The basic high-level abstraction for streaming in spark is called

DStream or discretized stream
● Dstream can be created
● --from input data streams from sources such as kafka,flume and

Kinesis
● A Dstream is represented as a sequence of RDDs.

Streaming Context

● A StreamingContext object has to be created which is the main entry point of
all Spark Streaming functionality.

● A StreamingContext object can be created from a Sparkcontext object.
● Define the input sources by creating input DStreams.
● Define the streaming computations by applying transformation and output

operations to DStreams.
● Start receiving data and processing it using (start ())
● Wait for the processing to be stopped (manually or due to any error)

(awaitTermination ())
The processing can be manually stopped using, (stop ())

Streaming Context

Operations Applied on DStream

● Any operation applied on a DStream translates to operations on the
underlying RDDs.

● converting a stream of lines to words, by applying the operation ‘flatmap’
on each RDD in the lines DStream

Input DStreams and Receivers

● Input DStreams are DStreams representing the stream of input data
received f

● Spark Streaming provides two categories of built-in streaming built-in
streaming sources.

● Basic sources: Sources directly available in the StreamingContext API.
Examples: file systems, and socket connections.

• Advanced sources: Sources like Kafka, Kinesis, etc. are available through
extra utility classes.

Input DStreams and Receivers

two kinds of receivers:
1. Reliable Receiver - A reliable receiver correctly sends acknowledgment to a

reliable source when the data has been received and stored in Spark with
replication.

2. Unreliable Receiver - An unreliable receiver does not send acknowledgment
to a source. This can be used for sources that do not support
acknowledgment, or even for reliable sources when one does not want or
need to go into the complexity of acknowledgment.

Files Streams

● Besides sockets, the StreamingContext API provides methods for
creating DStreams from files

● Reading data from files on any file system compatible with the HDFS
API (that is, HDFS, S3, NFS, etc.)

● Spark Streaming will monitor a directory and process any files
created in that directory

Transformations on DStreams

● Similar to that of RDDs, transformations allow the data from the input DStream to
be modified. DStreams support many of the transformations available on normal
Spark RDD’s.

Key concepts

● DStream – sequence of RDDs representing a stream of data
○ Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

● Transformations – modify data from on DStream to another
○ Standard RDD operations – map, countByValue, reduce, join, …
○ Stateful operations – window, countByValueAndWindow, …

● Output Operations – send data to external entity
○ saveAsHadoopFiles – saves to HDFS
○ foreach – do anything with each batch of results

DStream Example

Stateless vs Stateful Operations

● By design streaming operators are stateless they know nothing about
any previous batches

● Stateful operations have a dependency on previous batches of data
continuously accumulate metadata overtime

Windowed Stream processing

● Spark Streaming allows you to apply transformations over a sliding window
of data knows as windowed computations,

Windowed Stream processing
Any window operation needs to specify two parameters:
window length - The duration of the window (3 in the figure).

sliding interval - The interval at which the window operation is performed
(2 in the figure).

Window Based Transformtion

Real World Application
Example

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @
t+1batch @ t batch @

t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Twitter Streaming API

Example 1 – Get hashtags from Twitter
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one Dstream to create another DStreamnew DStream

new RDDs created for
every batch

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Example 1 – Get hashtags from Twitter
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMa
p

flatMa
p

flatMa
p

save save save

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

every batch saved
to HDFS

	Spark Streaming
	References
	What Is Spark?
	A Short History
	Interactive Streaming Vs Batch
	Motivation
	Need for a framework …
	Requirements
	Why MR is not a Solution for streaming Real Data
	What people have been doing ?
	Fault-tolerant Stream Processing
	What is Spark Streaming?
	Data Source of Spark Streaming
	Data Source of Spark Streaming
	Major Aspects of Spark Streaming�
	How does it work?
	Spark Streaming Programming Model
	Discretized Stream Processing
	Discretized Stream Processing
	DStream
	Streaming Context�
	Streaming Context�
	Operations Applied on DStream
	Input DStreams and Receivers�
	Input DStreams and Receivers
	Files Streams
	Transformations on DStreams�
	Key concepts
	DStream Example
	Stateless vs Stateful Operations
	Windowed Stream processing
	Windowed Stream processing
	Window Based Transformtion
	Real World Application Example
	Example 1 – Get hashtags from Twitter
	Example 1 – Get hashtags from Twitter
	Example 1 – Get hashtags from Twitter

