CSE 4/587

Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

Spark Streaming

References

Spark Streaming Programming Guide
http://spark.apache.org/docs/latest/streaming-programming-guide.html

Apache Spark documentation

o http://spark.apache.org/

Advanced Analytics with Spark by S. Ryza, U. Laserson, S. Owen and J. Wills

Data brick website :

https://www.databricks.com/glossary/what-is-spark-streaming

e Discretized Streams: A Fault-Tolerant Model for Scalable Stream

Processing, Matei Zaharia , Tathagata Das et al.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf

https://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/
https://www.databricks.com/glossary/what-is-spark-streaming
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf

What Is Spark?

e Parallel execution engine for big data processing

e [Lasyto use: 2-5x less code than Hadoop MR
o High level API's in Python, Java, and Scala

e Fast: up to 100x faster than Hadoop MR
o Can exploit in-memory when available
o Low overhead scheduling, optimized engine

e General: support multiple computation models APACHE<"<\Z

Spark’

A Short History

e Started at UC Berkeley in 2009
e Open Source: 20170
e Apache Project: 2013

e Today: most popular big data processing engine

sgarks

Interactive Streaming Vs Batch

e Interactive Streaming : Continuous flow of data/event
example: Tweet event, stream of log messages

e Batch : Data collected in regular interval of time

Motivation

" Many important applications must process Iarge streams of live data and
provide results in near-real-time ik .

(@ Connect 4 Dis .Overview o netresn [Lastony | Lastwosk | Losimonin | Anume | Jun 16,

- Social network trends ‘ W -)
- Website statistics e

#ThingsGirlsLike
. . lyikiDogdun RecepTayyipErdogan

- Intrusion detection systems S
#NigerianBloggers
#HocaliSoykinminiUnutma

= et C . FC Twente
Toni Canté
David Bowie

= Require large clusters to handle workloads

= Require latencies of few seconds

Need for a framework ...

... for building such complex stream processing applications

But what are the requirements
from such a framework?

Requirements

Scalable to large clusters

Achieves Low latencies

Simple programming model

Efficient recovery from failure

Integrates batch and interactive processing

Why MR is not a Solution for streaming Real Data

® Great for large amounts of static data
— Data is not moving!

* Forstreams: only for large windows Gy aoaane

o Boooe
=High latency, low efficiency ; 800000
acoane

Output

Figure : Tyler Akidau

What people have been doing ?

e Existing frameworks cannot do both
- Either, stream processing of 100s of MB/s with low latency
- Or, batch processing of TBs of data with high latency
e Build two stacks — one for batch, one for streaming
e Extremely painful to maintain two different stacks
- Different programming models
- Doubles implementation effort
- Doubles operational effort

Fault-tolerant Stream Processing

e Traditional processing model
--Pipeline of nodes
— Each node maintains mutable state
— Each input record updates the state
--and new records are sent out
e Mutable state is lost if node fails
e Making stateful stream processing input
e Fault-tolerant is challenging! records

mutable state

What is Spark Streaming?

Spark Streaming is a scalable fault-tolerant streaming processing
system that natively supports both batch and streaming
workloads.

It is an extension of the Spark API that process live data stream in
a real time

Balches of
Input data Batches of processed
stream AMCHE‘% input data APACHE& data
q§prKW T §prKW - -

Streaming Engine

Data Source of Spark Streaming

Streaming data sources

ke Y

Static data sources

tnmngﬂ" » i"? "
,
MySaL F'E:f}._

Sporf(z

Streaming

)

alela
Databases |

| Dashboards |

Data Source of Spark Streaming

o akka P [1.3\:’5’?.] 9

| / \
e streaming data .]
‘!é.; ﬁ il il { train models use trained |
bt sources | I

— P~ with live data model

ofs
g
3
{
?

j SparkStreammg [> s

/

o) g i g »’\-J\ J §g kafka
nnnnnn dra :\ < /// /

My \/ qa ; process w T| interactively
"mnngnl":'- @ :r‘i} Trillf_id ["1 ata F ame query with SQL J

1 ce0 e ; N /
Spark SQL
SQL + Datz nes

Image : databricks

Major Aspects of Spark Streaming

* Fastrecovery from failures and stragglers

« Better load balancing and resource usage

« Combining of streaming data with static datasets and interactive
queries

« Native integration with advanced processing libraries (SQL,
machine learning, graph processing)

How does it work?

e Data streams are chopped into batches of few secs
e SPARK treats each batches of data s RDDs and process them using
RDD operator
e Each batch is processed in Spark
e Results pushed out in batches
Spark® Streaming

| datastream5> ' D D D {SPQF’QZJ D D

results

)

receivers

[

Spark Streaming Programming Model

Discretized Stream (DStream)

- Represents a stream of data

- Implemented as a sequence of RDDs
DStreams API very similar to RDD API

- Create input DStreams from different sources
- Apply parallel operations

Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic

batch jobs
u Chop up the live stream into batches of X live data stream
seconds
= Spark treats each batch of data as RDDs and —
processes them using RDD operations batches of X [I—
[I—
u Finally, the processed results of the RDD sec?nds
operations are returned in batches 4;1 - Spark
processed

results

Discretized Stream Processing

Run a streaming computation as a series of very small, deterministic
batch jobs
live data stream

= Batch sizes as low as % second, latency ~ 1
second ﬁ ﬁ T :
= Potential for combining batch processing and
streaming processing in the same system batches of X
seconds

@ == — Spark
processed

results

DStream

e The basic high-level abstraction for streaming in spark is called
DStream or discretized stream

e Dstream can be created

e --from input data streams from sources such as kafka,flume and
Kinesis

e A Dstream is represented as a sequence of RDDs.

RDD @time1 RDD@time2 RDD@tme3 RDD @ time 4

DStream = = - datafrom | __ = datafrom || datafrom | _ | datafrom =
timeOto1l time 1to 2 time 2to 3 time3to4

Streaming Context

e A StreamingContext object has to be created which is the main entry point of
all Spark Streaming functionality.

e A StreamingContext object can be created from a Sparkcontext object.

e Define the input sources by creating input DStreams.

® Define the streaming computations by applying transformation and output
operations to DStreams.

e Start receiving data and processing it using (

e Wait for the processing to be stopped (manually or due to any error)

(

The processing can be manually stopped using,

Streaming Context

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

sc = SparkContext(master, appName)
ssc = StreamingContext(sc, 1)

Operations Applied on DStream

® Any operation applied on a DStream translates to operations on the
underlying RDDs.

converting a stream of lines to words, by applying the operation ‘flatmap’
on each RDD in the lines DStream

lines lines from lines from lines from

lines from
DStream timeOto 1 time 1to 2 time 2 to 3 time 3to 4
flatMap
operation
words words from words from words from words from
DStream time0to 1 time 1to 2 time 2 to 3 time 3to 4

Input DStreams and Receivers

® |[nput DStreams are DStreams representing the stream of input data
received f

e Spark Streaming provides two categories of built-in streaming built-in
streaming sources.

® Basic sources: Sources directly available in the StreamingContext API.
Examples: file systems, and socket connections.

* Advanced sources: Sources like Kafka, Kinesis, etc. are available through
extra utility classes.

Input DStreams and Receivers

two kinds of receivers:

1. Reliable Receiver - A reliable receiver correctly sends acknowledgment to a
reliable source when the data has been received and stored in Spark with
replication.

2. Unreliable Receiver - An unreliable receiver does not send acknowledgment
to a source. This can be used for sources that do not support
acknowledgment, or even for reliable sources when one does not want or
need to go into the complexity of acknowledgment.

Files Streams

e Besides sockets, the StreamingContext API provides methods for
creating DStreams from files

e Reading data from files on any file system compatible with the HDFS
API (that is, HDFS, S3, NFS, etc.)

e Spark Streaming will monitor a directory and process any files
created in that directory

Kafka

Flume

HDFS/S3 Sp Qr K |:> | Databases |
Kinesis Streaming Dashboards |

Twitter

Transformations on DStreams

® Similar to that of RDDs, transformations allow the data from the input DStream to

be modified. DStreams support many of the transformations available on normal

Spark RDD'’s.

Transformation

map(func)

flatMap(func)

filter(func)

repartition(numpPartitions)

union(otherStream)

count()

reduce(func)

Meaning

Return a new DStream by passing each element of the source DStream through a function func.

Similar to map, but each input item can be mapped to 0 or more output items.

Return a new DStream by selecting only the records of the source DStream on which func returns true.

Changes the level of parallelism in this DStream by creating more or fewer partitions.

Return a new DStream that contains the union of the elements in the source DStream and otherDStream.

Return a new DStream of single-element RDDs by counting the number of elements in each RDD of the
source DStream.

Return a new DStream of single-element RDDs by aggregating the elements in each RDD of the source
DStream using a function func (which takes two arguments and returns one). The function should be

associative and commutative so that it can be computed in parallel.

Key concepts

® DStream —sequence of RDDs representing a stream of data
o Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

® Transformations — modify data from on DStream to another
O Standard RDD operations — map, countByValue, reduce, join, ...
O Stateful operations — window, countByValueAndWindow, ...

® Output Operations — send data to external entity
o saveAsHadoopFiles — saves to HDFS
o foreach — do anything with each batch of results

DStream Example

// Create a DStream that will connect to a server
// listening on a TCP socket, say <IP>:9990

val ssc = new StreamingContext(conf, Seconds(5))
val lines = ssc.socketTextStream("<Some_IP>", 9990)

// Word count again

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word = (word.trim, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print()

// Start the computation

ssc.start()

// Wait for the application to terminate
ssc.awaitTermination()

// ssc.stop() forces application to stop

Stateless vs Stateful Operations

e By design streaming operators are stateless they know nothing about
any previous batches
e Stateful operations have a dependency on previous batches of data
continuously accumulate metadata overtime

Windowed Stream processing

e Spark Streaming allows you to apply transformations over a sliding window
of data knows as windowed computations,

time 1 time 2 time 3 time 4 time 5
original
DStream

window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

Windowed Stream processing

Any window operation needs to specify two parameters:
window length - The duration of the window (3 in the figure).
sliding interval - The interval at which the window operation is performed
(2 in the figure).

time 1 time 2 time 3 time 4 time 5

original

DStream
window-based
operation
windowed
DStream

window window window
at time 1 attime 3 attime 5

Window Based Transformtion

val tweets =

ssc.twitterStream()

val hashTags =

tweets.flatMap (status

=> getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

2 A
/ I! /\ ff\-‘
,..—r/ S r,._a’f \ _._r/ \'%‘
Y k' \
sliding window . -
g) window length | | sliding interval
operation ,
(. o N 7\ /

—

window length
A

e o o o]
DStream of data W_/

sliding interval

Real World Application
Example

Example 1 — Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

Twitter Streaming APl |L.batch @t % % :>

tweets DStream m | | | | l | | | | l
UUUV Uy LB

stored in memory as an RDD
(immutable, distributed)

Example 1 — Get hashtags from Twitter

val tweets ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

transformation: modify data in one Dstream to create another DStream

tweets DStream

flatMap flatMap

new RDDs created for
every batch

flatMap

hashTags Dstream

eat, #doe - |

Example 1 — Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

batch @ t batch @ t+1 batch @ t+2
tweets DStream

latMa latMa latMa
hashTags DStream

every batch saved
to HDFS

	Spark Streaming
	References
	What Is Spark?
	A Short History
	Interactive Streaming Vs Batch
	Motivation
	Need for a framework …
	Requirements
	Why MR is not a Solution for streaming Real Data
	What people have been doing ?
	Fault-tolerant Stream Processing
	What is Spark Streaming?
	Data Source of Spark Streaming
	Data Source of Spark Streaming
	Major Aspects of Spark Streaming�
	How does it work?
	Spark Streaming Programming Model
	Discretized Stream Processing
	Discretized Stream Processing
	DStream
	Streaming Context�
	Streaming Context�
	Operations Applied on DStream
	Input DStreams and Receivers�
	Input DStreams and Receivers
	Files Streams
	Transformations on DStreams�
	Key concepts
	DStream Example
	Stateless vs Stateful Operations
	Windowed Stream processing
	Windowed Stream processing
	Window Based Transformtion
	Real World Application Example
	Example 1 – Get hashtags from Twitter
	Example 1 – Get hashtags from Twitter
	Example 1 – Get hashtags from Twitter

