
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

CSE 4/587
Data Intensive Computing

Spark Streaming 



References 

● Spark Streaming Programming Guide
● http://spark.apache.org/docs/latest/streaming-programming-guide.html 
● Apache Spark documentation
● ○ http://spark.apache.org/
● Advanced Analytics with Spark by S. Ryza, U. Laserson, S. Owen and J. Wills
● Data brick website : 
https://www.databricks.com/glossary/what-is-spark-streaming
● Discretized Streams: A Fault-Tolerant Model for Scalable Stream 

Processing, Matei Zaharia ,Tathagata Das et al. 
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf

https://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/
https://www.databricks.com/glossary/what-is-spark-streaming
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf


What is Spark Streaming?

● Spark Streaming is a scalable fault-tolerant streaming processing 
system that natively supports both batch and streaming 
workloads.

● It is an extension of the Spark API that process live data stream in 
a real time 

Streaming Engine



How does it work?
● Data streams are chopped into batches of few secs
● SPARK treats each batches of data s RDDs and process them using 

RDD operator 
● Each batch is processed  in Spark
● Results pushed out in batches

Streaming

data streams

re
ce

iv
er

s
batches results



Spark Streaming Programming Model

Discretized Stream (DStream)
- Represents a stream of data
- Implemented as a sequence of RDDs
DStreams API very similar to RDD API

- Create input DStreams from different sources
- Apply parallel operations



Discretized Stream Processing 

● The model of spark streaming  treats streaming data as a series of deterministic 
batch computations on discrete time intervals. 

● The data received in each interval is stored reliably across the cluster to form an 
input dataset for that interval. 

● Once the time interval completes, this dataset is processed via deterministic parallel 
operations, such as map, reduce and groupBy to produce new datasets representing    
either program outputs or  intermediate state

● D-Stream is a sequence of immutable, partitioned datasets (specifically 
RDDs) that can be acted on through deterministic operators.



Discretized Stream Processing 

Run a streaming computation as a series of very small, deterministic 
batch jobs

7

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results

 Chop up the live stream into batches of X 
seconds 

 Spark treats each batch of data as RDDs and 
processes them using RDD operations

 Finally, the processed results of the RDD 
operations are returned in batches



DStream
● The basic high-level abstraction for streaming in spark is called 

DStream or discretized stream
● Dstream can be created 
● --from input data streams from sources such as kafka,flume and 

Kinesis
● A Dstream is represented as a sequence of RDDs. 



Streaming Context

● A StreamingContext object has to be created which is the main entry point of all 
Spark Streaming functionality.

● A StreamingContext object can be created from a Sparkcontext object.
● Define the input sources by creating input DStreams.
● Define the streaming computations by applying transformation and output 

operations to DStreams.
● Start receiving data and processing it using (start ())
● Wait for the processing to be stopped (manually or due to any error)

(awaitTermination ())
The processing can be manually stopped using, (stop ())



Streaming Context



Counting a Page View Example 

● Counting of page view events by URL.

pageViews=readStream("http://...", "1s")
ones = pageViews.map(event => (event.url, 1))
counts = ones.runningReduce((a, b) => a + b)

PageViews: creates a D-Stream by an
event stream over HTTP, and groups these into 1-second
intervals.

transforms the event stream to get a DStream
of (URL, 1) pairs called ones

performs a running count of these using a stateful 
runningReduce operator.



Counting a Page View Example 

The system will launch map tasks every 
second to process the new events dataset 
for that second. 

Then it will launch reduce tasks that take
as input both the results of the maps and 
the results of the previous interval’s 
reduces, stored in an RDD. 

These tasks will produce a new RDD with 
the updated counts.

Figure : Lineage graph for RDDs in the view count program.
Each oval is an RDD, whose partitions are shown as circles.



Components of Spark Streaming 

Spark Streaming consists of three 
components, shown in Figure:
● A master that tracks the D-Stream 

lineage graph and schedules tasks to 
compute new RDD partitions.

● Worker nodes that receive data, store 
the partitions of input and computed 
RDDs, and execute tasks.

● A client library used to send data into 
the system.



Window Computation on Stream processing 
Any window operation needs to specify two parameters:

window length - The duration of the window (3 in the figure).
sliding interval - The interval at which the window operation is performed 

(2 in the figure).



Window Based Transformtion



Window operations 



Join Operations

● Stream-stream joins
● Streams can be very easily joined with other streams

● Here, in each batch interval, the RDD generated by stream1 will be joined 
with the RDD generated by stream2



Join Operations

● Stream-stream joins
● You can also do leftOuterJoin, rightOuterJoin, fullOuterJoin. 
● It is often very useful to do joins over windows of the streams. 



Setting the Right Batch Interval



Real World Application 
Example 



Example 1 – Get hashtags from Twitter 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD 
(immutable, distributed)

Twitter Streaming API



Example 1 – Get hashtags from Twitter 
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one Dstream to create another DStreamnew DStream

new RDDs created for 
every batch 

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, … ]



Example 1 – Get hashtags from Twitter  
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

every batch saved 
to HDFS



Example 3 – Count the hashtags over last 10 mins
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window 
operation window length sliding interval



tagCounts

Example 3 – Counting the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTags

t-1 t t+1 t+2 t+3

sliding window

countByValue
count over all 
the data in the 

window



?

Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

hashTags

t-1 t t+1 t+2 t+3

+
+
–

countByValue
add the counts 
from the new 
batch in the 

window
subtract the 
counts from 
batch before 
the window

tagCounts



Fault Tolerant feature of 
Spark Streaming 



Caching/persistence 
● Dtreams also allows developers to persist the stream’s data into memory .
● Using persist( ) method , Dstream will automatically persist  every RDD of that 

Dstream in memory 
● This is useful if the data in the DStream will be computed multiple times
● DStreams generated by window-based operations are automatically persisted 

in memory, without the developer calling persist().
● For input streams that receive data over the network (such as, Kafka, sockets, 

etc.), the default persistence level is set to replicate the data to two nodes for 
fault-tolerance.



Check pointing Spark Streaming 

● Check-pointing is the process to make streaming applications 
resilient to failure 

● To ensure streaming applications operate in 24/7 , we should check-
pointenough information for a storage system that is fault tolerant 

Two types of data that are checkpointed : 
Metadata check-pointing is primarily needed for recovery from driver 
failures. Includes - configuration, operations, incomplete batches
Data check-pointing 
Store generated RDDs to HDFS . This is necessary in some stateful 
transformations



● When to enable Checkpointing
● Checkpointing must be enabled for applications with any of the following 

requirements:
--Usage of stateful transformations
--Recovering from failures of the driver running the application

Check pointing Spark Streaming 



Fault-tolerance :Master

● Master saves the state of the DStreams to a checkpoint file
● -Checkpoiint file saved to HDFS periodically
● If master fails, it can be restarted using the checkpoint file



Fault-tolerance :Worker

● RDDs are remember the sequence of 
operations that created it from the 
original fault-tolerant input data

● Batches of input data are replicated in 
memory of multiple worker nodes, 
therefore fault-tolerant

● Data lost due to worker failure, can 
be recomputed from input data

input data 
replicated
in memory

flatMap

lost partitions 
recomputed on 
other workers

tweets
RDD

hashTags
RDD



Accumulators in Spark Streaming 

● Accumulators are variables that are only “added” to through an associative 
and commutative operation

● They can be used to implement counters (as in MapReduce) or sums.
● Spark natively supports accumulators of numeric types, and programmers 

can add support for new types.



Accumulators in Spark Streaming 
● A named accumulator (in this instance counter) will display in the web UI for 

the stage that modifies that accumulator

Tracking accumulators in the 
UI can be useful for 

understanding the progress 
of running stages


	Spark Streaming 
	References 
	What is Spark Streaming?
	How does it work?
	Spark Streaming Programming Model
	Discretized Stream Processing 
	Discretized Stream Processing 
	DStream 
	Streaming Context�
	Streaming Context�
	Counting a Page View Example 
	Counting a Page View Example 
	Components of Spark Streaming 
	Window Computation on Stream processing 
	Window Based Transformtion
	Window operations 
	Join Operations�
	Join Operations�
	Setting the Right Batch Interval�
	Real World Application Example 
	Example 1 – Get hashtags from Twitter 
	Example 1 – Get hashtags from Twitter 
	Example 1 – Get hashtags from Twitter  
	Example 3 – Count the hashtags over last 10 mins
	Example 3 – Counting the hashtags over last 10 mins
	Smart window-based countByValue
	Fault Tolerant feature of Spark Streaming 
	Caching/persistence 
	Check pointing Spark Streaming 
	Check pointing Spark Streaming 
	Fault-tolerance :Master
	Fault-tolerance :Worker
	Accumulators in Spark Streaming 
	Accumulators in Spark Streaming 

