
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Dr. Shamshad Parvin
shamsadp@buffalo.edu
313 Davis Hall

CSE 4/587
Data Intensive Computing

References

https://cse.buffalo.edu/~bina/cse487/spring2018/

https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

https://mapr.com/blog/in-depth-look-hbase-architecture/

https://data-flair.training/blogs/

https://www.edureka.co/blog/

https://www.simplilearn.com/

https://cse.buffalo.edu/%7Ebina/cse487/spring2018/
https://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://mapr.com/blog/in-depth-look-hbase-architecture/
https://data-flair.training/blogs/
https://www.edureka.co/blog/

Apache Ecosystem

HDFS
(Data storage)

YARNS
Resource management

MapReduce
Data processing

Flume
Structured/Unstructured

data

Scoop
Structured data

Hive
(SQL)

Pig
(Scripting)

Mahout
(machine learning)

HBASE
NoSQL

Zoo
Keeper

(Co-
ordination

Oozie
(workflo

w)

Spark
(data flow
engine)

Why HIVE?

Relational
database

Not capable of
handing huge

amount of data

SQL

Hard to
program

What is HIVE?

● Hive, an open source peta-byte scale date warehousing framework
based on Hadoop, was developed by the Data Infrastructure Team at
Facebook.

● Apache Hive is a distributed, fault-tolerant data warehouse system
built on top of Hadoop to provide easy data storage and analysis .

● Hive supports queries in a SQL-like declarative language (HiveQL),
which are compiled into MapReduce jobs that are executed using
Hadoop

Hive Key Principles

Advantages of Hive

● Useful for people who aren’t from a programming background as
it eliminates the need to write complex MapReduce program.

● Extensible and scalable to cope up with the growing volume and
variety of data, without affecting performance of the system.

● It is as an efficient ETL (Extract, Transform, Load) tool.
● Hive supports any client application written in Java, PHP, Python,

C++ or Ruby by exposing its Thrift server

Hive

● With Hive, now the following task can be performed:
• Tables can be portioned and bucketed
• Schema flexibility and evolution
• Hive tables can be defined directly in the HDFS
• Extensible – Types, Formats, Functions and scripts

Where to Use Hive?

● Apache Hive can be used in the following places:
• Data Mining
• Log Processing
• Document Indexing
• Customer Facing Business Intelligence
• Predictive Modelling

HIVE Architecture

HIVE Components

Major Components:
● Metastore
● Driver
● Compiler
● Executer/engine
● CLI, UI and Thrift server

Metastore

Metastore acts as the system catalog for Hive
● Stores information about the tables, partitions, schemas, columns, etc.
● It stores the data in a traditional RDBMS format

Without Metastore, it is not possible to impose a structure on hadoop
files

● Information stored in the Metastore must be backed up regularly
● Backup server replicates the data, and retrieves it in case of data loss

Driver and Compiler

The Driver is the component that manages the lifecycle of a HiveQL
statement as it moves through Hive.
● Driver also maintains a session handle and any session statistics

The Compiler performs the compilation of the HiveQL query
● The metadata stored in the Metastore is used by the compiler to

generate the execution plan

Compiler

Similar to compilers in traditional databases, the Hive compiler processes
HiveQL statements in the following steps:

1. Convert the query to an Abstract Syntax Tree (AST)
2. Check for compatibility and compile-time errors
3. Convert the AST to a Directed Acyclic Graph (DAG)
4. Execute tasks in order of their dependencies

a. Each task is only executed if all of its pre-reqs have been executed

Executor

The Executor executes tasks in the order of their dependencies

1. An MR task first serializes its part of the plan into a plan.xml file.
2. This file is added to the job cache for the task and instances of ExecMapper and

ExecReducers are spawned using Hadoop
3. Each of these classes deserializes the plan.xml and executes the relevant part of

the operator DAG

CLI, UI, and Thrift Server - provide a user interface for an external user to interact with
Hive. Thrift server in Hive allows external clients to interact with Hive over a network,
similar to the JDBC or ODBC protocols:

Client Components

CLI, UI, and Thrift Server each provide a user interface for an external user
to interact with Hive
● Thrift Server in Hive allows external clients to interact with Hive over a

network, similar to the JDBC or ODBC protocols.

Hive Data Model

Data in Hive organized into :
● Tables
● Partitions
● Buckets

Hive Data Model Contd.

● Tables
- Analogous to relational tables
- Each table has a corresponding directory in HDFS
- Data serialized and stored as files within that directory

- - Users can specify custom serialization –deserialization schemes
(SerDe’s)

Hive Data Model Contd.

● Partitions
- Each table can be broken into partitions
- Partitions determine distribution of data within subdirectories

Example -
CREATE_TABLE Sales (sale_id INT, amount FLOAT)
PARTITIONED BY (country STRING, year INT, month INT)
So each partition will be split out into different folders like
Sales/country=US/year=2012/month=12

Hierarchy of Hive Partitions

/hivebase/Sales

/country=US

/country=CANADA

/year=2012

/year=2015

/year=2012

/year=2014
/month=12

/month=11

File File File

/month=11

Hive Data Model Contd.

● Buckets
- Data in each partition divided into buckets
- Based on a hash function of the column
- H(column) mod NumBuckets = bucket number
- Each bucket is stored as a file in partition directory

HIVE Data types

Hive structures data into well-understood database concepts
ie: tables, rows, columns, partitions

It supports primitive types:
● Integers (signed) – bigint(8 bytes), int(4 bytes), smallint(2 bytes), tinyint(1 byte).
● Floating point numbers – float(single precision), double(double precision)
● String

Hive also supports:
● Associative arrays: map<key-type, value-type>
● Lists: list<element type>
● Structs: struct<file name: file type…>

SerDe: serialize and deserialize
API is used to move data in

and out of tables

Query Language

HiveQL comprises of a subset of SQL and some extensions

From SQL: from clause subqueries, inner, left outer, right outer and outer joins,
cartesian products, group by and aggregations, union all, create table, select
and many functions on primitive and complex types make the language very
SQL like

MetaData browsing capabilities like show tables and describe are also present

This enables anyone familiar with SQL to start a hive cli(command line interface)
and begin querying the system right away

Query Language

HiveQL comprises of a subset of SQL and some extensions

From SQL: from clause subqueries, inner, left outer, right outer and outer joins,
cartesian products, group by and aggregations, union all, create table, select
and many functions on primitive and complex types make the language very
SQL like

MetaData browsing capabilities like show tables and describe are also present

This enables anyone familiar with SQL to start a hive cli(command line interface)
and begin querying the system right away

HiveQL

DDL :
CREATE DATABASE
CREATE TABLE
ALTER TABLE
UPDATE TABLE

DML:
LOAD TABLE
INSERT

QUERY:
SELECT
GROUP BY
JOIN
UNION

Limitations of Hive:

• Not designed for online transaction processing.
• Provides acceptable latency for interactive data browsing.
• Does not offer real-time queries and row level updates.
• Latency for Hive queries is generally very high.

HBase

● Open-source implementation of Google’s Big Table
○ A ton of semi-structured data is created every day

● Apache HBase created as part of the Hadoop project
○ It is built on top of HDFS
○ Provides fault-tolerant way of storing large quantities of sparse data
○ It is a distributed non relational database

HBase

HBase is a column-oriented database
● Column-oriented databases store records in a sequence of columns

i.e. the entries in a column are stored in contiguous locations on disks

HHBase
●Based on Google’s BigTable paper●Like column oriented relational databases (store data in column order) but with a twist●Tables similarly to RDBMS, but handle semi-structured●Data model:

○Collection of Column Families
○Column family = (key, value) where value = set of related columns (standard, super)
○indexed by row key, column key and timestamp

allow key-value pairs to be stored (and retrieved on key) in a massively parallel system
storing principle: big hashed distributed tables
properties: partitioning (horizontally and/or vertically), high availability etc. completely transparent to application

* Better: extendible records

29

HBase Architecture

HBase Architecture

The three main components of Hbase architecture are:
● HMaster server
● Region server
● Regions

HBase Tables are divided horizontally by row key range into Regions
● A region contains all rows in the table between the region’s start and end key
● Regions are assigned to the nodes in the cluster, called Region Servers, and

these serve data for reads and writes

HBase Architecture

● A Region has a default size of 256MB (can be configured based on need)
● A group of regions is served to the clients by a Region Server
● A Region Server can serve approximately 1000 regions to the client.

HBase Architecture

The Hadoop DataNode stores the data that the Region Server is managing
● All HBase data is stored in HDFS files
● Region Servers are collocated with the HDFS DataNodes

○ Enables data locality (putting the data close to where it is needed)

HMaster is responsible for region assignment, coordinating the region servers,
and re-assigning regions for recovery or load balancing
● Monitors all RegionServer instances in the cluster (listens for notifications

from ZooKeeper)
● It is also responsible for creating, deleting, and updating tables

HBase Architecture

HBase uses ZooKeeper as a distributed coordination service to maintain
server state in the cluster
● ZooKeeper maintains which

servers are alive and available,
and provides server failure
notification.

● Zookeeper uses consensus to
guarantee common shared state.

HBase Architecture

The META table is an HBase table that keeps a list of all regions in the system

HBase Architecture

The RegionServer has 4 main components:

● Write Ahead Log (WAL) is a file on the DFS used to store data that hasn't yet been
persisted to permanent storage; used for recovery in the case of failure.

● BlockCache is the read cache
○ Stores frequently read data in memory
○ Least Recently Used (LRU) data is evicted when full

● MemStore is the write cache
○ Stores new data which has not yet been written to disk
○ Data gets sorted before writing to disk
○ One MemStore per column family per region

● HFiles store the rows as sorted KeyValues on disk

HBase Architecture

RegionServer Architecture

HBase Summary

● Scales automatically
● Integrated with HDFS and Hadoop
● Capability of handling semi-structured data
● Provides fast random access to available data
● Provides JAVA and other APIs

	Slide Number 1
	References
	Apache Ecosystem
	Why HIVE?
	What is HIVE?
	Hive Key Principles
	Advantages of Hive�
	Hive
	Where to Use Hive?�
	HIVE Architecture
	HIVE Components
	Metastore
	Driver and Compiler
	Compiler
	Executor
	Client Components
	Hive Data Model
	Hive Data Model Contd.
	Hive Data Model Contd.
	Hierarchy of Hive Partitions
	Hive Data Model Contd.
	HIVE Data types
	Query Language
	Query Language
	HiveQL
	Limitations of Hive:�
	HBase
	HBase
	HHBase
	HBase Architecture
	HBase Architecture
	HBase Architecture
	HBase Architecture
	HBase Architecture
	HBase Architecture
	HBase Architecture
	HBase Architecture
	HBase Summary

