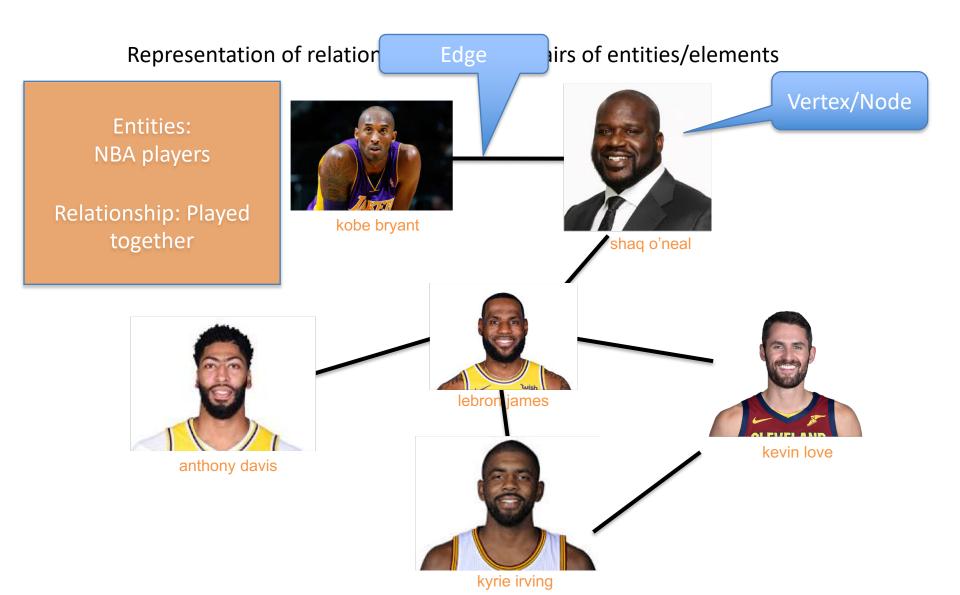
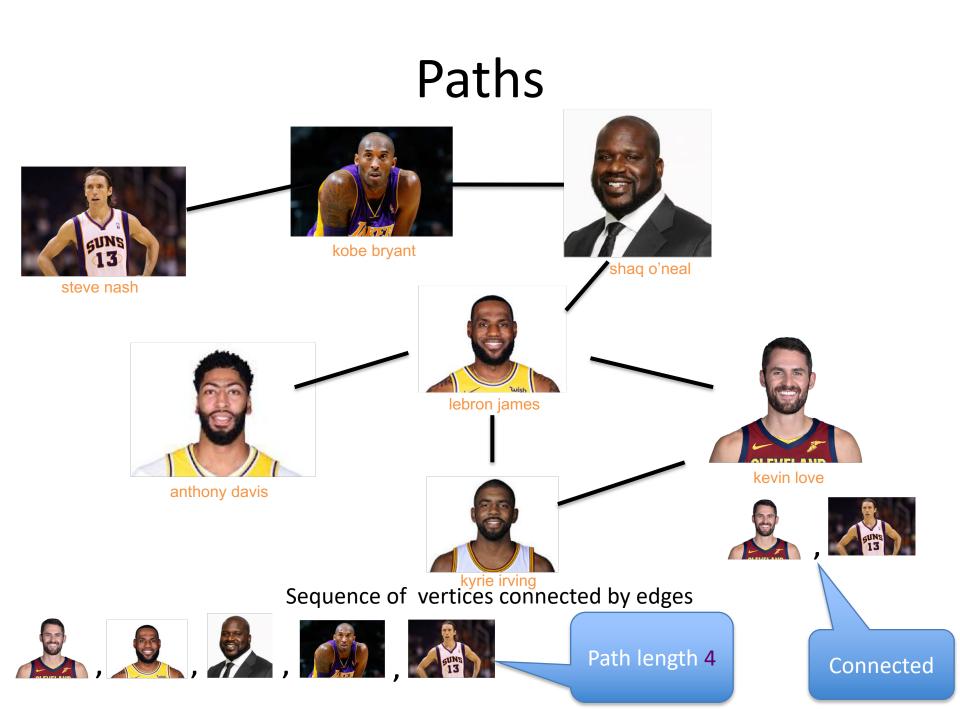
Lecture 11

CSE 331 Feb 19, 2020

Graphs

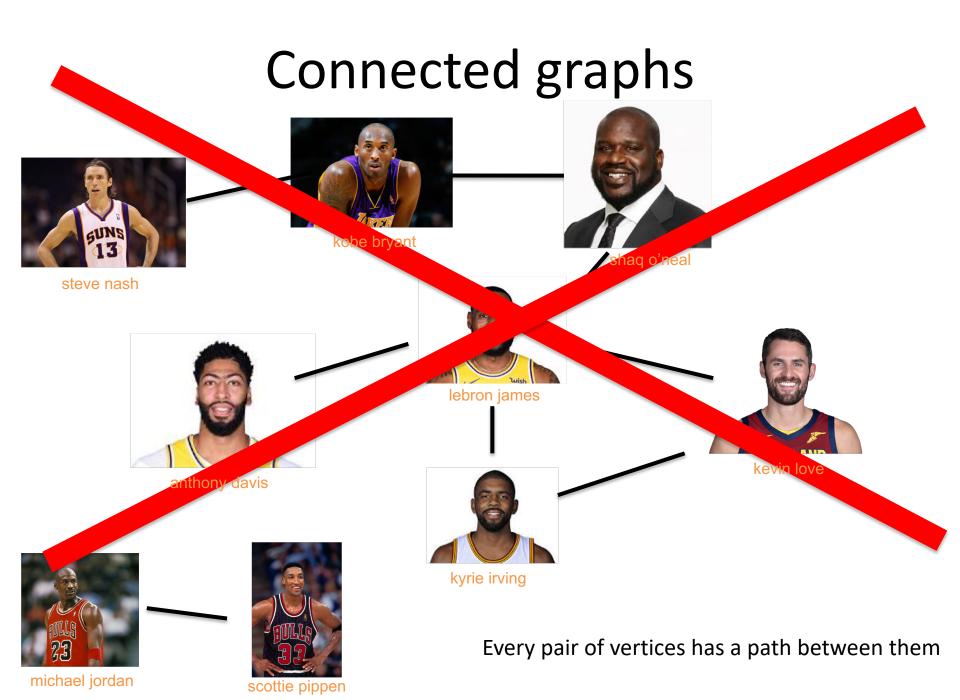


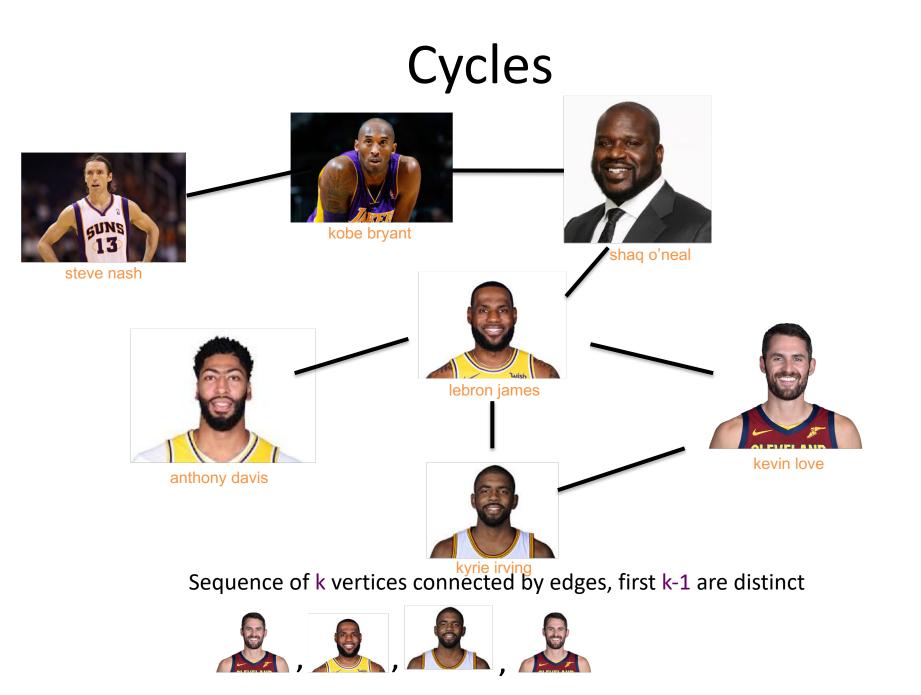


Connectivity

u and w are connected iff there is a path between them

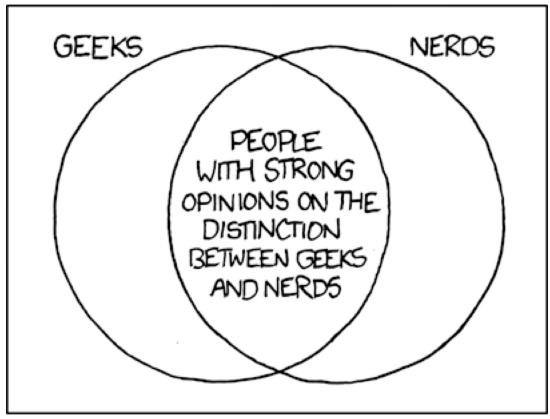
A graph is connected iff all pairs of vertices are connected





Questions?

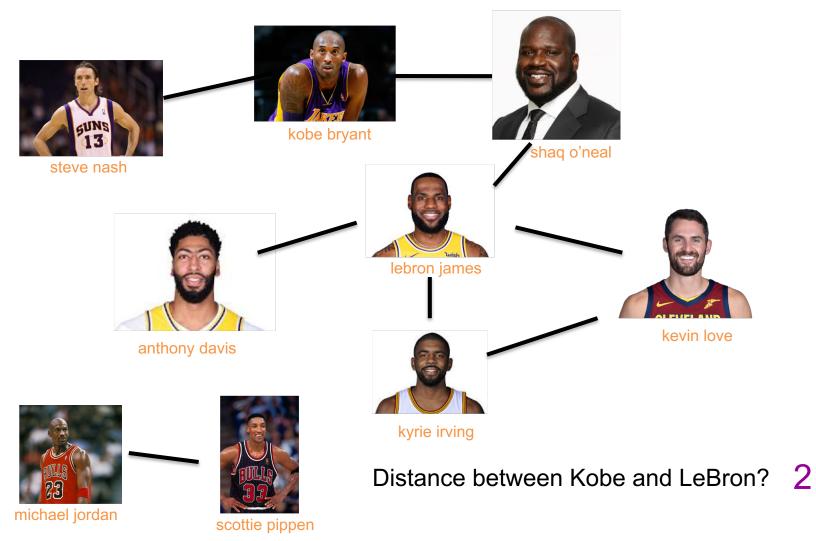
Formally define everything



http://imgs.xkcd.com/comics/geeks_and_nerds.png

Distance between u and v

Length of the shortest length path between \mathbf{u} and \mathbf{v}



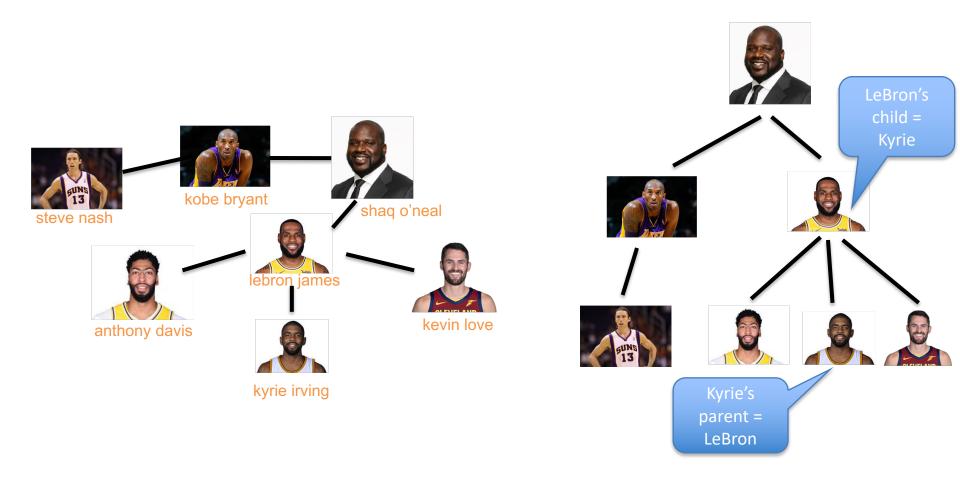
Tree

Connected undirected graph with no cycles



Rooted Tree

A rooted tree



Pick any vertex as root

Let the rest of the tree hang under "gravity"

Every n vertex tree has n-1 edges

Trees

This page collects material from previous incarnations of CSE 331 on trees, especially the proof that trees with n nodes have exactly n - 1 edges.

Where does the textbook talk about this?

Section 3.1 in the textbook has the lowdown on trees.

Fall 2018 material

Here is the lecture video:

Every n vertex tree has n-1 edges

Let G be an undirected graph on n nodes

Then ANY two of the following implies the third:

T is connected

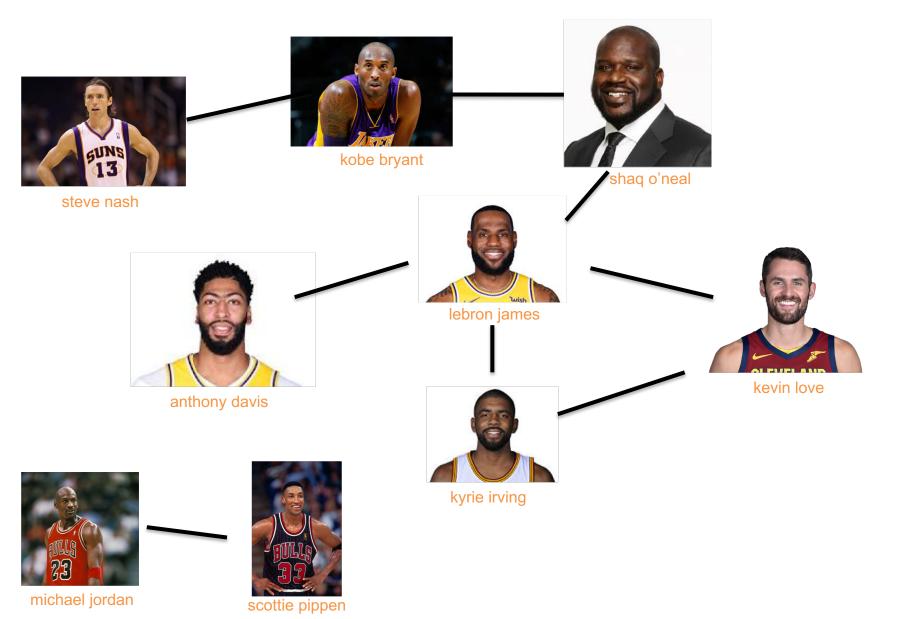
T has no cycles

T has n-1 edges

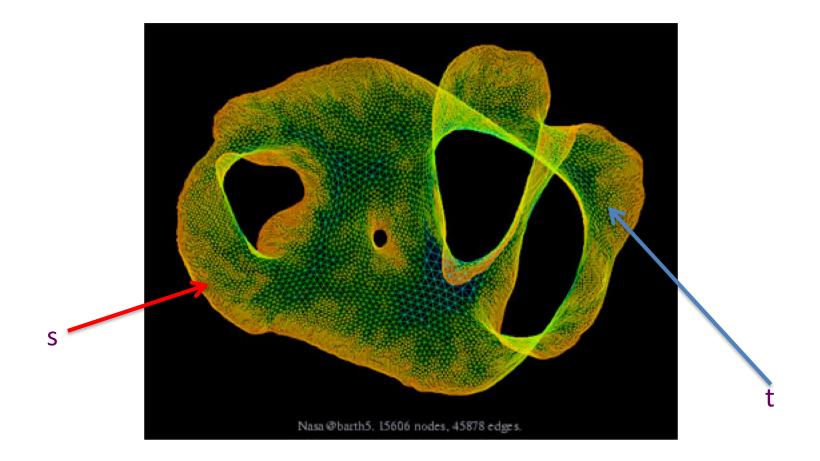
Rest of Today's agenda

Algorithms for checking connectivity

Checking by inspection

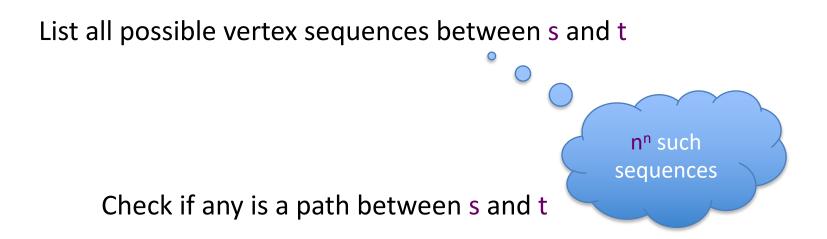


What about large graphs?

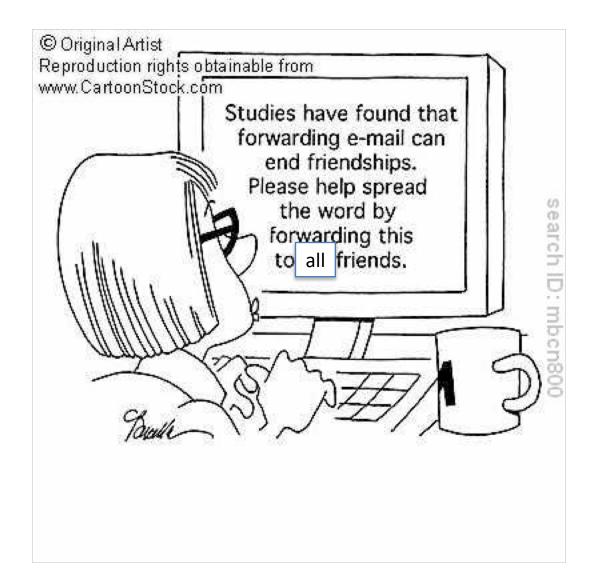


Are s and t connected?

Brute-force algorithm?



Algorithm motivation



Breadth First Search (BFS)

BFS via examples

In which we derive the breadth first search (BFS) algorithm via a sequence of examples.

Expected background

These notes assume that you are familiar with the following:

- · Graphs and their representation. In particular,
 - Notion of connectivity of nodes and connected components of graphs
 - Adjacency list representation of graphs
 - Notation:
 - G = (V, E)
 - n = |V| and m = |E|
 - CC(s) denotes the connected component of s
- Trees and their basic properties

The problem

In these notes we will solve the following problem:

Connectivity Problem

Input: Graph G = (V,E) and s in V

Output: All t connected to s in G

Breadth First Search (BFS)

Build layers of vertices connected to s

 $L_0 = \{s\}$

Assume $L_0,...,L_i$ have been constructed

 L_{i+1} is the set of vertices not chosen yet but are connected by an edge to L_i

Stop when new layer is empty