Lecture 15

CSE 331 Feb 28, 2020

Main Steps in Algorithm Design

Where do graphs fit in?

Rest of the course*

Greedy algorithms

Build the final solution piece by piece

Being short sighted on each piece

Never undo a decision

End of Semester blues

The optimal solution

Can only do one thing at any day: what is the maximum number of tasks that you can do?

Interval Scheduling Problem

{ s(i), ..., f(i)-1 }

Input: n intervals [s(i), f(i)) for $1 \le i \le n$

Output: A *schedule* **S** of the **n** intervals

No two intervals in S conflict

S is maximized

Algorithm with examples

Interval Scheduling via examples

In which we derive an algorithm that solves the Interval Scheduling problem via a sequence of examples.

The problem

In these notes we will solve the following problem:

Interval Scheduling Problem

Input: An input of *n* intervals [s(i), f(i)), or in other words, $\{s(i), \ldots, f(i) - 1\}$ for $1 \le i \le n$ where *i* represents the intervals, s(i) represents the start time, and f(i) represents the finish time.

Output: A schedule S of n intervals where no two intervals in S conflict, and the total number of intervals in S is maximized.

Sample Input and Output

Example 1

No intervals overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove i from R

Return S^{*}= S

Example 2

At most one overlap

Algorithm?

At most one overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove alfromsks? that conflict with i from R

Return S^{*}= S

Example 3

More than one conflict

Set S to be the empty set While R is not empty Choose i in R Add i to S Remove all tasks that conflict with i from R Return S*= S

Greedily solve your blues!

Making it more formal

What is a good choice for v(i)?

v(i) = f(i) - s(i)

Smallest duration first

Set S to be the empty set

While R is not empty

Choose i in R that minimizes s(i)

Add i to S

Remove all tasks that conflict with i from R

So are we done?

Return S^{*}= S

Set S to be the empty set

While R is not empty

Choose i in R that minimizes s(i) Add i to S

Remove all tasks that conflict with i from R

Return $S^* = S$

Pick job with minimum conflicts

Set S to be the empty set

While R is not empty

Choose i in R that has smallest number of conflicts Add i to S

Remove all tasks that conflict with i from R

Return S^{*}= S

Nope (but harder to show)

Set S to be the empty set

While R is not empty

Choose i in R that has smallest number of conflicts Add i to S

Remove all tasks that conflict with i from R

Return S^{*}= S

Algorithm?

Set S to be the empty set While R is not empty Choose i in R that minimizes v(i) Add i to S Remove all tasks that conflict with i from R Return S*= S

Earliest finish time first

Set S to be the empty set While R is not empty Choose i in R that minimizes f(i) Add i to S Remove all tasks that conflict with i from R Return S*= S

Find a counter-example?

Questions?

Today's agenda

Prove the correctness of the algorithm

Final Algorithm

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R with the earliest finish time

Add i to S

Remove all requests that conflict with i from R

Return $S^* = S$