Lecture 17

CSE 331
Mar 4, 2020

Quiz 1 on Friday

三 note @290 오

Quiz 1 on Friday, Mar 6

The first quiz will be from 2:00-2:10 pm in class on Friday, March 6. We will have a 5 mins break after the quiz and the lecture will start at $2: 15$ pm
 There will be two T/F with justification questions (like those in the sample midterm 1: @233.) Also, quiz 1 will cover all topics we cover in class till Wednesday, March 4.

Also, like the mid-term, y'all can bring in one letter-sized cheat-sheet (you can use both sides)
\#pin
quiz

Today's agenda

Analyze run-time of the greedy algorithm

Algorithm implementation

Go through the intervals in order of their finish time

Check if $s[i]<f(1)$

In general, if jth interval is the last one chosen
Pick smallest $i>j$ such that $s[i] \geq f(j)$

The final algo

$O(n \log n)$ time sort intervals such that $f(i) \leq f(i+1)$

$\mathrm{O}(\mathrm{n})$ time build array $\mathrm{s}[1 . . \mathrm{n}]$ s.t. $\mathrm{s}[\mathrm{i}]=$ start time for i

$$
\begin{aligned}
& \text { Add } 1 \text { to } S \text { and set } f=f(1) \\
& \text { For } i=2 \text {.. } n \\
& \text { If } s[i] \geq f \\
& \text { Add } i \text { to } S \\
& \text { Set } f=f(i) \\
& \text { Return } S^{*}=S
\end{aligned}
$$

Reading Assignment

Sec 4.1of [KT]

Questions?

The "real" end of Semester blues

Write up a term paper

Party!

Exam study
331 HW

The "real" end of Semester blues

Write up a term paper

Exam study

Party!

1
331 HW
Project

The algorithmic task

Write up a term paper

Scheduling to minimize lateness

Write up a term paper

Exam study

Party!
\downarrow
331 HW

One possible schedule

Minimizing Max Lateness

Minimizing Maximum Lateness

This page collects material from previous incarnations of CSE 331 on scheduling to minimize maximum lateness.

Where does the textbook talk about this?

Section 4.2 in the textbook has the lowdown on the problem of scheduling to minimize maximum lateness.

Fall 2018 material

First lecture
Here is the lecture video:

Today

Reading Assignment

Sec 2.5 of [KT]

Shortest Path problem

Input: Directed graph G=(V,E)
Edge lengths, l_{e} for e in E

"start" vertex s in V

Output: All shortest paths from s to all nodes in V

Naïve Algorithm

$\Omega(n!)$ time

Dijkstra's shortest path algorithm

