### Lecture 17

CSE 331 Mar 4, 2020

## Quiz 1 on Friday



quiz

## Today's agenda

Analyze run-time of the greedy algorithm

# Algorithm implementation

### Go through the intervals in order of their finish time



# The final algo

O(n log n) time sort intervals such that  $f(i) \le f(i+1)$ 

O(n) time build array s[1..n] s.t. s[i] = start time for i

Add 1 to S and set f = f(1)

For i = 2 .. n

lf s[i] ≥ f Add i to S

Set f = f(i)

Return  $S^* = S$ 

### **Reading Assignment**

Sec 4.1of [KT]

### Questions?

# The "real" end of Semester blues





Write up a term paper



# The "real" end of Semester blues

There are deadlines and durations of tasks



#### Write up a term paper



## The algorithmic task



# Scheduling to minimize lateness

All the tasks have to be scheduled GOAL: minimize maximum lateness



#### Write up a term paper



## One possible schedule

All the tasks have to be scheduled GOAL: minimize maximum lateness





# Minimizing Max Lateness

## Minimizing Maximum Lateness

This page collects material from previous incarnations of CSE 331 on scheduling to minimize maximum lateness.

### Where does the textbook talk about this?

Section 4.2 in the textbook has the lowdown on the problem of scheduling to minimize maximum lateness.

### Fall 2018 material

#### **First lecture**

Here is the lecture video:



### Shortest Path Problem



### **Reading Assignment**

Sec 2.5 of [KT]

### Shortest Path problem



5

**Output:** All shortest paths from s to all nodes in V

### Naïve Algorithm

 $\Omega(n!)$  time

## Dijkstra's shortest path algorithm

