Lecture 18

CSE 331
Mar 6, 2020

Quiz starts at 2:00pm and ends at 2:10pm

Lecture starts at $2: 15 \mathrm{pm}$

Shortest Path Problem

Another more important application

Is BGP a known acronym for you?

Routing uses shortest path algorithm

Shortest Path problem

Input: Directed graph $G=(\mathrm{V}, \mathrm{E})$
Edge lengths, l_{e} for e in E

"start" vertex s in V

Output: Length of shortest paths from s to all nodes in V

Dijkstra's shortest path algorithm

Towards Dijkstra’s algo: part 1

Determine $\mathrm{d}(\mathrm{t})$ one by one

$$
d(s)=0
$$

Towards Dijkstra’s algo: part 2

Determine $\mathrm{d}(\mathrm{t})$ one by one

Let u be a neighbor of s with smallest $\left.\right|_{(s, u)}$

$$
\mathrm{d}(\mathrm{u})=\mathrm{I}_{(\mathrm{s}, \mathrm{u})}
$$

Length of ~ 0
Not making any claim on other vertices

Towards Dijkstra’s algo: part 3

Determine $\mathrm{d}(\mathrm{t})$ one by one

Assume we know $d(v)$ for every v in R

Compute an upper bound d'(w) for every w not in R

$$
\begin{aligned}
& d(w) \leq d(u)+I_{(u, w)} \\
& d(w) \leq d(x)+I_{(x, w)} \\
& d(w) \leq d(y)+I_{(y, w)}
\end{aligned}
$$

$$
d^{\prime}(w)=\min _{e=(u, w) \text { in } E, u \text { in } R} d(u)+l_{e}
$$

Dijkstra's shortest path algorithm

Input: Directed $G=(V, E), I_{e} \geq 0$, s in V
$R=\{s\}, d(s)=0$
While there is a x not in R with (u, x) in E, u in R
Pick w among all x with smallest $d^{\prime}(w)$ value Add w to R $d(w)=d^{\prime}(w)$

$$
d^{\prime}(w)=\min _{e=(u, w) \text { in } E, u \text { in } R} d(u)+l_{e}
$$

$$
\begin{array}{ll}
d(s)=0 & d(u)=1 \\
d(w)=2 & d(x)=2 \\
d(y)=3 & d(z)=4
\end{array}
$$

Shortest paths

