Lecture 21

CSE 331
Mar 25, 2020

Minimum Spanning Tree Problem

Input: Undirected, connected $G=(V, E)$, edge costs c_{e}
Output: Subset $\mathrm{E}^{\prime} \subseteq \mathrm{E}$, s.t. $\mathrm{T}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ is connected $C(T)$ is minimized

If all $c_{e}>0$, then T is indeed a tree

Prim's algorithm

Similar to Dijkstra's algorithm

Robert Prim

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}_{\mathrm{e}}>0$ for every e in E $S=\{s\}, T=\varnothing$

While S is not the same as V

Among edges $e=(u, w)$ with u in S and w not in S, pick one with minimum cost Add w to S, e to T

Cut Property Lemma for MSTs

Condition: S and $\mathrm{V} \backslash \mathrm{S}$ are non-empty

Cheapest crossing edge is in all MSTs

Assumption: All edge costs are distinct

Today's agenda

Optimality of Prim's algorithm

Prove Cut Property Lemma

Optimality of Kruskal's algorithm

Remove distinct edge weights assumption

Kruskal's Algorithm

Input: $G=(V, E), c_{e}>0$ for every e in E

$$
T=\varnothing
$$

Sort edges in increasing order of their cost

Consider edges in sorted order

Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

Optimality of Kruskal's Algorithm

Input: $G=(V, E), c_{e}>0$ for every e in E
$T=\varnothing$
Sort edges increasing order of their cost
S is non-empty
$V \backslash S$ is non-empty
First crossing edge considered

Consider edges in sorted order
If an edge can be added to without adding a cycle hen add it to T

Is (V, T) a spanning tree?

No cycles by design

Just need to show that (V, T) is connected

Removing distinct cost assumption

Change all edge weights by very small amounts

Make sure that all edge weights are distinct

MST for "perturbed" weights is the same as for original

Changes have to be small enough so that this holds

Run time for Prim's algorithm

Similar to Dijkstra's algorithm

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}_{\mathrm{e}}>0$ for every e in E
$S=\{s\}, T=\varnothing$

While S is not the same as V
Among edges $e=(u, w)$ with u in S and w not in S, pick one with minimum cost Add w to S , e to T

Running time for Kruskal's Algorithm

Can be implemented in O(m log n) time (Union-find DS)

Input: $G=(V, E), c_{e}>0$ for every e in E
$T=\varnothing$

Sort edges in increasing order of their cost

Consider edges in sorted order

Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

Reading Assignment

Sec 4.5, 4.6 of [KT]

